libri ingegneria acustica

#acoustic engineering books #sound engineering textbooks #noise control design #architectural acoustics #audio engineering resources

Explore a comprehensive collection of acoustic engineering books and sound engineering textbooks, perfect for students, professionals, and enthusiasts. These resources cover fundamental principles, advanced design methodologies, noise control strategies, and practical applications in fields ranging from architectural acoustics to audio system design, providing essential knowledge for mastering the science of sound.

We collaborate with academic communities to expand our research paper archive.

Thank you for stopping by our website.

We are glad to provide the document Sound Engineering Textbooks you are looking for. Free access is available to make it convenient for you.

Each document we share is authentic and reliable.

You can use it without hesitation as we verify all content.

Transparency is one of our main commitments.

Make our website your go-to source for references.

We will continue to bring you more valuable materials.

Thank you for placing your trust in us.

This document is one of the most sought-after resources in digital libraries across the internet.

You are fortunate to have found it here.

We provide you with the full version of Sound Engineering Textbooks completely free of charge.

Architectural Acoustics

Noise is everywhere and in most applications that are related to audio and speech, such as human-machine interfaces, hands-free communications, voice over IP (VoIP), hearing aids, teleconferencing/telepresence/telecollaboration systems, and so many others, the signal of interest (usually speech) that is picked up by a microphone is generally contaminated by noise. As a result, the microphone signal has to be cleaned up with digital signal processing tools before it is stored, analyzed, transmitted, or played out. This cleaning process is often called noise reduction and this topic has attracted a considerable amount of research and engineering attention for several decades. One of the objectives of this book is to present in a common framework an overview of the state of the art of noise reduction algorithms in the single-channel (one microphone) case. The focus is on the most useful approaches, i.e., filtering techniques (in different domains) and spectral enhancement methods. The other objective of Noise Reduction in Speech Processing is to derive all these well-known techniques in a rigorous way and prove many fundamental and intuitive results often taken for granted. This book is especially written for graduate students and research engineers who work on noise reduction for speech and audio applications and want to understand the subtle mechanisms behind each approach. Many new and interesting concepts are presented in this text that we hope the readers will find useful and inspiring.

Noise Reduction in Speech Processing

An ideal text for advanced undergraduates, the book provides the foundations needed to understand the acoustics of rooms and musical instruments as well as the basics for scientists and engineers interested in noise and vibration. The new edition contains four new chapters devoted primarily to applications of acoustical principles in everyday life: Microphones and Other Transducers, Sound in Concert Halls and Studios, Sound and Noise Outdoors; and Underwater Sound.

Principles of Vibration and Sound

This book reviews a variety of methods for wave-based acoustic simulation and recent applications to architectural and environmental acoustic problems. Following an introduction providing an overview of computational simulation of sound environment, the book is in two parts: four chapters on methods and four chapters on applications. The first part explains the fundamentals and advanced techniques for three popular methods, namely, the finite-difference time-domain method, the finite element method, and the boundary element method, as well as alternative time-domain methods. The second part demonstrates various applications to room acoustics simulation, noise propagation simulation, acoustic property simulation for building components, and auralization. This book is a valuable reference that covers the state of the art in computational simulation for architectural and environmental acoustics.

Architectural Acoustics

Comprises all acoustic phenomena within enclosures. More specifically it deals with the transmission of speech and music in rooms in which some kind of performance is presented and with the propagation of noise in working environments such as factories or large offices.

Computational Simulation in Architectural and Environmental Acoustics

This classic and authoritative textbook contains material that is not over-simplified and can be used to solve real-world noise control engineering problems. Engineering Noise Control, 6th edition covers theoretical concepts, and practical application of current noise control technology. Topics extensively covered or revised from the 5th edition include: beating; addition and subtraction of noise levels; combining multi-path noise level reductions; hearing damage assessment and protection; speech intelligibility; noise weighting curves; instrumentation, including MEMS, IEPE and TEDS sensors: noise source types, including transportation noise and equipment noise estimations; outdoor sound propagation, including noise barriers, meteorological effects and sloping ground effects; sound in rooms, muffling devices, including 4-pole analysis, self noise and pressure drop calculations; sound transmission through single, double and triple partitions; vibration measurement and control, finite element analysis; boundary element methods; and statistical energy analysis. Discusses all aspects of industrial and environmental noise control An ideal textbook for advanced undergraduate and graduate courses in noise control An excellent reference text for acoustic consultants and engineers Practical applications are used to demonstrate theoretical concepts Includes material not available in other books A wide range of example problems and solutions that are linked to noise control practice are available for download from www.causalsystems.com.

Room Acoustics

Handbook for Sound Engineers is the most comprehensive reference available for audio engineers, and is a must read for all who work in audio. With contributions from many of the top professionals in the field, including Glen Ballou on interpretation systems, intercoms, assistive listening, and fundamentals and units of measurement, David Miles Huber on MIDI, Bill Whitlock on audio transformers and preamplifiers, Steve Dove on consoles, DAWs, and computers, Pat Brown on fundamentals, gain structures, and test and measurement, Ray Rayburn on virtual systems, digital interfacing, and preamplifiers, Ken Pohlmann on compact discs, and Dr. Wolfgang Ahnert on computer-aided sound system design and room-acoustical fundamentals for auditoriums and concert halls, the Handbook for Sound Engineers is a must for serious audio and acoustic engineers. The fifth edition has been updated to reflect changes in the industry, including added emphasis on increasingly prevalent technologies such as software-based recording systems, digital recording using MP3, WAV files, and mobile devices. New chapters, such as Ken Pohlmann's Subjective Methods for Evaluating Sound Quality, S. Benjamin Kanters's Hearing Physiology—Disorders—Conservation, Steve Barbar's Surround Sound for Cinema, Doug Jones's Worship Styles in the Christian Church, sit aside completely revamped staples like Ron Baker and Jack Wrightson's Stadiums and Outdoor Venues, Pat Brown's Sound System Design, Bob Cordell's Amplifier Design, Hardy Martin's Voice Evacuation/Mass Notification Systems, and Tom Danley and Doug Jones's Loudspeakers. This edition has been honed to bring you the most up-to-date information in the many aspects of audio engineering.

Engineering Noise Control

The Audio Engineer's Reference Book is an authoritative volume on all aspects of audio engineering and technology including basic mathematics and formulae, acoustics and psychoacoustics, microphones, loudspeakers and studio installations. The content is concise and accurate, providing quick and easy access to everything you will need to know, from basic formulae to practical explanations and operational detail. Compiled by an international team of experts, this second edition has been updated to keep abreast of fast-moving areas such as digital audio and transmission technology. Much of the material has been revised, updated and expanded to cover the very latest techniques. For professionals engaged in the design, manufacture and installation of all types of audio equipment, this reference book will prove an invaluable resource. It will also be of interest to anyone employed in recording, broadcasting or audio-visual units in industry, and students on university courses. Michael Talbot-Smith is a freelance audio consultant and writer who, for many years, trained audio engineers at BBC Wood Norton. He is also the author of Sound Assistance and Audio Explained, and is the editor of Sound Engineer's Pocketbook.

Handbook for Sound Engineers

- Speech Generation: Acoustics, Models and Applications (Arild Lacroix). - The Evolution of Digital Audio Technology (John Mourjopoulos). - Audio-Visual Interaction (Armin Kohlrausch). - Speech and Audio Coding (Ulrich Heute). - Binaural Technique (Dorte Hammerhoei, Henrik Moeller). - Auditory Virtual Environment (Pedro Novo). - Evolutionary Adaptions for Auditory Communication (Georg Klump). - A Functional View on the Human Hearing Organ (Herbert Hudde). - Modeling of Binaural Hearing (Jonas Braasch). - Psychoacoustics and Sound Quality (Hugo Fastl). - Semiotics for Engineers (Ute Jekosch). - Quality of Transmitted Speech for Humans and Machines (Sebastian Möller).

Audio Engineer's Reference Book

This classic and authoritative student textbook contains information that is not over simplified and can be used to solve the real world problems encountered by noise and vibration consultants as well as the more straightforward ones handled by engineers and occupational hygienists in industry. The book covers the fundamentals of acoustics, theoretical concepts and practical application of current noise control technology. It aims to be as comprehensive as possible while still covering important concepts in sufficient detail to engender a deep understanding of the foundations upon which noise control technology is built. Topics which are extensively developed or overhauled from the fourth edition include sound propagation outdoors, amplitude modulation, hearing protection, frequency analysis, muffling devices (including 4-pole analysis and self noise), sound transmission through partitions, finite element analysis, statistical energy analysis and transportation noise. For those who are already well versed in the art and science of noise control, the book will provide an extremely useful reference. A wide range of example problems that are linked to noise control practice are available on www.causalsystems.com for free download.

Communication Acoustics

Sound, devoid of meaning, would not matter to us. It is the information sound conveys that helps the brain to understand its environment. Sound and its underlying meaning are always associated with time and space. There is no sound without spatial properties, and the brain always organizes this information within a temporal-spatial framework. This book is devoted to understanding the importance of meaning for spatial and related further aspects of hearing, including cross-modal inference. People, when exposed to acoustic stimuli, do not react directly to what they hear but rather to what they hear means to them. This semiotic maxim may not always apply, for instance, when the reactions are reflexive. But, where it does apply, it poses a major challenge to the builders of models of the auditory system. Take, for example, an auditory model that is meant to be implemented on a robotic agent for autonomous search-&-rescue actions. Or think of a system that can perform judgments on the sound quality of multimedia-reproduction systems. It becomes immediately clear that such a system needs • Cognitive capabilities, including substantial inherent knowledge • The ability to integrate information across different sensory modalities To realize these functions, the auditory system provides a pair of sensory organs, the two ears, and the means to perform adequate preprocessing of the signals provided by the ears. This is realized in the subcortical parts of the auditory system. In the title of a prior book, the term Binaural Listening is used to indicate a focus on sub-cortical functions. Psychoacoustics and auditory signal processing contribute substantially to this area. The

preprocessed signals are then forwarded to the cortical parts of the auditory system where, among other things, recognition, classification, localization, scene analysis, assignment of meaning, quality assessment, and action planning take place. Also, information from different sensory modalities is integrated at this level. Between sub-cortical and cortical regions of the auditory system, numerous feedback loops exist that ultimately support the high complexity and plasticity of the auditory system. The current book concentrates on these cognitive functions. Instead of processing signals, processing symbols is now the predominant modeling task. Substantial contributions to the field draw upon the knowledge acquired by cognitive psychology. The keyword Binaural Understanding in the book title characterizes this shift. Both books, The Technology of Binaural Listening and the current one, have been stimulated and supported by AABBA, an open research group devoted to the development and application of models of binaural hearing. The current book is dedicated to technologies that help explain, facilitate, apply, and support various aspects of binaural understanding. It is organized into five parts, each containing three to six chapters in order to provide a comprehensive overview of this emerging area. Each chapter was thoroughly reviewed by at least two anonymous, external experts. The first part deals with the psychophysical and physiological effects of Forming and Interpreting Aural Objects as well as the underlying models. The fundamental concepts of reflexive and reflective auditory feedback are introduced. Mechanisms of binaural attention and attention switching are covered—as well as how auditory Gestalt rules facilitate binaural understanding. A general blackboard architecture is introduced as an example of how machines can learn to form and interpret aural objects to simulate human cognitive listening. The second part, Configuring and Understanding Aural Space, focuses on the human understanding of complex three-dimensional environments—covering the psychological and biological fundamentals of auditory space formation. This part further addresses the human mechanisms used to process information and interact in complex reverberant environments, such as concert halls and forests, and additionally examines how the auditory system can learn to understand and adapt to these environments. The third part is dedicated to Processing Cross-Modal Inference and highlights the fundamental human mechanisms used to integrate auditory cues with cues from other modalities to localize and form perceptual objects. This part also provides a general framework for understanding how complex multimodal scenes can be simulated and rendered. The fourth part, Evaluating Aural-scene Quality and Speech Understanding, focuses on the object-forming aspects of binaural listening and understanding. It addresses cognitive mechanisms involved in both the understanding of speech and the processing of nonverbal information such as Sound Quality and Quality-of- Experience. The aesthetic judgment of rooms is also discussed in this context. Models that simulate underlying human processes and performance are covered in addition to techniques for rendering virtual environments that can then be used to test these models. The fifth part deals with the Application of Cognitive Mechanisms to Audio Technology. It highlights how cognitive mechanisms can be utilized to create spatial auditory illusions using binaural and other 3D-audio technologies. Further, it covers how cognitive binaural technologies can be applied to improve human performance in auditory displays and to develop new auditory technologies for interactive robots. The book concludes with the application of cognitive binaural technologies to the next generation of hearing aids.

Engineering Noise Control

"Essential for anyone building, renovating or maintaining a recording studio; includes 3 whole new chapters on foldback, electrical supplies and analogue interfacing; new sections on cinema soundtrack mixing rooms and TV voice rooms. Covering acoustics, electro-acoustics and psychoacoustics Newell uses real world studios, their problems and solutions, to provide the foundations for successful studio design and maintenance."--Page 4 of cover

The Technology of Binaural Understanding

This is a concise collection of practical and relevant data for anyone working on, or interested in, sound systems. Since the second edition, the Sony Mini Disc has arrived, interest has grown in valve amplifiers and vintage radios, and new safetyregulations are in force for public address systems; all of these are covered in this edition. Also included are further notes on the crossover network, and the latest exciting developments in surround sound. The number of outdoor concerts is growing and place particular demands on sound systems, including the need for reinforcement. A new section gives basic tips. Surround sound developments are described in a further new section, outlining previous systems and how they worked, along with an account of how the ear actually distinguishes sound sources. All of the new material complements the wide coverage of the previous edition make this the most comprehensive little guide to audio and hi-fi.

Recording Studio Design

Absorbers and diffusers are two of the main design tools for altering the acoustic conditions of a room, semi-enclosed spaces and the outdoor environment. Their correct use is important for delivering high quality acoustics. This unique and authoritative text describes how to effectively measure, model, design, optimise and apply diffusers and absorbers. Surface diffusion is a relatively young subject area, and diffuser design, application and characterisation are new to practitioners and researchers, who may not have been exposed to this new information in their formal training. This book is a resource for new and experienced acousticians seeking an understanding of the evolution and current state of the art in diffuser research and practice. Absorption is a more established technology, and so the book blends traditional design with modern developments. By collecting the key aspects of absorbers in one text, the book offers new and experienced professionals an opportunity to understand this subject in more depth. This detailed book serves to cover the practical and theoretical aspects of absorbers and diffusers and is well illustrated, with examples of installations and case studies.

Newnes Audio and Hi-Fi Engineer's Pocket Book

Now in its 3rd edition, a concise collection of practical data for those working on, or interested in, sound systems. Updated throughout to cover the latest technology and safety regulations.

Acoustic Absorbers and Diffusers

Sound Reproduction: The Acoustics and Psychoacoustics of Loudspeakers and Rooms, Third Edition explains the physical and perceptual processes that are involved in sound reproduction and demonstrates how to use the processes to create high-quality listening experiences in stereo and multichannel formats. Understanding the principles of sound production is necessary to achieve the goals of sound reproduction in spaces ranging from recording control rooms and home listening rooms to large cinemas. This revision brings new science-based perspectives on the performance of loudspeakers, room acoustics, measurements and equalization, all of which need to be appropriately used to ensure the accurate delivery of music and movie sound tracks from creators to listeners. The robust website (www.routledge.com/cw/toole) is the perfect companion to this necessary resource.

Newnes Audio and Hi-fi Engineer's Pocket Book

The essential guide to sound reproduction, offering practical advice on the room-loudspeaker system and entire sound reproduction chain from a leading expert in the field.

Sound Reproduction

The Acoustic Bubble describes the interaction of acoustic fields with bubbles in liquid. The book consists of five chapters. Chapter 1 provides a basic introduction to acoustics, including some of the more esoteric phenomena that can be seen when high-frequency high-intensity underwater sound is employed. Chapter 2 discusses the nucleation of cavitation and basic fluid dynamics, while Chapter 3 draws together the acoustics and bubble dynamics to discuss the free oscillation of a bubble and acoustic emissions from such activity. The acoustic probes that are often applied to study the behavior of a bubble when an externally-applied acoustic field drives it into oscillation is deliberated in Chapter 4. The last chapter outlines a variety of effects associated with acoustically-induced bubble activity. The bubble detection, sonoluminescence, sonochemistry, and pulse enhancement are also covered.

This publication is a good reference for physics and engineering students and researchers intending to acquire knowledge of the acoustic interactions of acoustic fields with bubbles.

Sound Reproduction

Acoustic Emission (AE) techniques have been studied in civil engineering for a long time. The techniques are recently going to be more and more applied to practical applications and to be standardized in the codes. This is because the increase of aging structures and disastrous damages due to recent earthquakes urgently demand for maintenance and retrofit of civil structures in service for example. It results in the need for the development of advanced and effective inspection techniques. Thus, AE techniques draw a great attention to diagnostic applications and in material testing. The book covers all levels from the description of AE basics for AE beginners (level of a student) to sophisticated AE algorithms and applications to real large-scale structures as well as the observation of the cracking process in laboratory specimen to study fracture processes.

The Acoustic Bubble

This definitive guide covers the design and application of absorbers and diffusers in acoustics. Surface diffusion is a relatively young subject area, and diffuser design, application and characterisation are often not well understood. Although there is greater knowledge of absorption, it is also informed by new research. As two of the main design tools for altering the acoustic conditions of rooms, the correct use of absorbers and diffusers is important to the creation of quality acoustics. This text details the evolution and the current state of the art in diffuser and absorber research and application. It covers a range of practical and theoretical aspects, with extensive examples of installations and case studies to cater to practitioners working in the measurement, modelling and design of rooms, semi-enclosed spaces as well as in noise control. It is also invaluable for students and researchers wanting a grounding in acoustic treatment, as well as understanding the latest developments. All chapters have been revised and brought up to date in this new edition, with new applications, absorbers and diffusers featured. Sustainability, portable vocal booths, and fast time domain models for diffusers are just a few of the new sections. Improved techniques for measurement and prediction are included, as well as bringing old methods up-to-date with the latest refinements from standards and research. Most of the prediction methods in the book are now linked to open source implementations and downloadable MATLAB scripts, enabling readers to exploit the knowledge in this book more readily in design and research.

Acoustic Emission Testing

Get ready to learn live sound reinforcement using the best-selling title on the subject available! The simple language, detailed illustrations, and concrete examples in this book are suitable for novice to intermediate-level users. "Live Sound Reinforcement" outlines all aspects of P.A. system operation and commonly encountered sound system design concerns. Topics include microphones, speaker systems, equalizers, mixers, signal processors, amplifiers, system wiring and interfaces, indoor and outdoor sound considerations and psychoacoustics.

Acoustic Absorbers and Diffusers

This book presents the signal processing algorithms that have been developed to process the signals acquired by a spherical microphone array. Spherical microphone arrays can be used to capture the sound field in three dimensions and have received significant interest from researchers and audio engineers. Algorithms for spherical array processing are different to corresponding algorithms already known in the literature of linear and planar arrays because the spherical geometry can be exploited to great beneficial effect. The authors aim to advance the field of spherical array processing by helping those new to the field to study it efficiently and from a single source, as well as by offering a way for more experienced researchers and engineers to consolidate their understanding, adding either or both of breadth and depth. The level of the presentation corresponds to graduate studies at MSc and PhD level. This book begins with a presentation of some of the essential mathematical and physical theory relevant to spherical microphone arrays, and of an acoustic impulse response simulation method, which can be used to comprehensively evaluate spherical array processing algorithms in reverberant environments. The chapter on acoustic parameter estimation describes the way in which useful descriptions of acoustic scenes can be parameterized, and the signal processing algorithms that can be used to estimate the parameter values using spherical microphone arrays. Subsequent chapters exploit these parameters including in particular measures of direction-of-arrival and of diffuseness of a

sound field. The array processing algorithms are then classified into two main classes, each described in a separate chapter. These are signal-dependent and signal-independent beamforming algorithms. Although signal-dependent beamforming algorithms are in theory able to provide better performance compared to the signal-independent algorithms, they are currently rarely used in practice. The main reason for this is that the statistical information required by these algorithms is difficult to estimate. In a subsequent chapter it is shown how the estimated acoustic parameters can be used in the design of signal-dependent beamforming algorithms. This final step closes, at least in part, the gap between theory and practice.

Live Sound Reinforcement

All the design and development inspiration and direction an audio engineer needs in one blockbuster book! Douglas Self has selected the very best sound engineering design material from the Focal and Newnes portfolio and complied it into this volume. The result is a book covering the gamut of sound engineering. The material has been selected for its timelessness as well as for its relevance to contemporary sound engineering issues.

Theory and Applications of Spherical Microphone Array Processing

This book provides a comprehensive introduction to the theory and practice of spherical microphone arrays, and was written for graduate students, researchers and engineers who work with spherical microphone arrays in a wide range of applications. The new edition includes additions and modifications, and references supplementary Matlab code to provide the reader with a straightforward start for own implementations. The book is also accompanied by a Matlab manual, which explains how to implement the examples and simulations presented in the book. The first two chapters provide the reader with the necessary mathematical and physical background, including an introduction to the spherical Fourier transform and the formulation of plane-wave sound fields in the spherical harmonic domain. In turn, the third chapter covers the theory of spatial sampling, employed when selecting the positions of microphones to sample sound pressure functions in space. Subsequent chapters highlight various spherical array configurations, including the popular rigid-sphere-based configuration. Beamforming (spatial filtering) in the spherical harmonics domain, including axis-symmetric beamforming, and the performance measures of directivity index and white noise gain are introduced, and a range of optimal beamformers for spherical arrays, including those that achieve maximum directivity and maximum robustness are developed, along with the Dolph-Chebyshev beamformer. The final chapter discusses more advanced beamformers, such as MVDR (minimum variance distortionless response) and LCMV (linearly constrained minimum variance) types, which are tailored to the measured sound field. Mathworks kindly distributes the Matlab sources for this book on https://www.mathworks.com/matlabcentral/fileexchange/68655-fundamentals-of-spherical-array-processing.

Audio Engineering Explained

This open access book provides a concise explanation of the fundamentals and background of the surround sound recording and playback technology Ambisonics. It equips readers with the psychoacoustical, signal processing, acoustical, and mathematical knowledge needed to understand the inner workings of modern processing utilities, special equipment for recording, manipulation, and reproduction in the higher-order Ambisonic format. The book comes with various practical examples based on free software tools and open scientific data for reproducible research. The book's introductory section offers a perspective on Ambisonics spanning from the origins of coincident recordings in the 1930s to the Ambisonic concepts of the 1970s, as well as classical ways of applying Ambisonics in first-order coincident sound scene recording and reproduction that have been practiced since the 1980s. As, from time to time, the underlying mathematics become quite involved, but should be comprehensive without sacrificing readability, the book includes an extensive mathematical appendix. The book offers readers a deeper understanding of Ambisonic technologies, and will especially benefit scientists, audio-system and audio-recording engineers. In the advanced sections of the book, fundamentals and modern techniques as higher-order Ambisonic decoding, 3D audio effects, and higher-order recording are explained. Those techniques are shown to be suitable to supply audience areas ranging from studio-sized to hundreds of listeners, or headphone-based playback, regardless whether it is live, interactive, or studio-produced 3D audio material.

Acustica e architettura

"Sound Reinforcement for Audio Engineers illustrates the current state of the art in sound reinforcement. Beginning with an outline of various fields of applications, from sports venues to religious venues, corporate environments and cinemas, this book is split into twelve sections covering room acoustics, loudspeakers, microphones, and acoustic modelling among many other topics. Ending with a comprehensive appendix packed with references and a historical overview of sound reinforcement design, this is the essential reference book for both students of acoustics and electrical engineering, but also for engineers looking to expand their knowledge of designing sound reinforcement systems"--

Fundamentals of Spherical Array Processing

Handbook for Sound Engineers is the most comprehensive reference available for audio engineers. All audio topics are explored: if you work on anything related to audio you should not be without this book! The 4th edition of this trusted reference has been updated to reflect changes in the industry since the publication of the 3rd edition in 2002 -- including new technologies like software-based recording systems such as Pro Tools and Sound Forge; digital recording using MP3, wave files and others; mobile audio devices such as iPods and MP3 players. Over 40 topics are covered and written by many of the top professionals for their area in the field, including Glen Ballou on interpretation systems, intercoms, assistive listening, and image projection; Ken Pohlmann on compact discs and DVDs; David Miles Huber on MIDI; Dr. Eugene Patronis on amplifier design and outdoor sound systems; Bill Whitlock on audio transformers and preamplifiers; Pat Brown on fundamentals and gain structures; Ray Rayburn on virtual systems and digital interfacing; and Dr. Wolfgang Ahnert on computer-aided sound system design and acoustics for concert halls.

Ambisonics

Building or architectural acoustics is taken in this book to cover all aspects of sound and vibration in buildings. The book covers room acoustics but the main emphasis is on sound insulation and sound absorption and the basic aspects of noise and vibration problems connected to service equipment and external sources. Measuring techniques connected to these fields are also brought in. It is designed for advanced level engineering studies and is also valuable as a guide for practitioners and acoustic consultants who need to fulfil the demands of building regulations. It gives emphasis to the acoustical performance of buildings as derived from the performance of the elements comprising various structures. Consequently, the physical aspects of sound transmission and absorption need to be understood, and the main focus is on the design of elements and structures to provide high sound insulation and high absorbing power. Examples are taken from all types of buildings. The book aims at giving an understanding of the physical principles involved and three chapters are therefore devoted to vibration phenomena and sound waves in fluids and solid media. Subjective aspects connected to sound and sound perception is sufficiently covered by other books; however, the chapter on room acoustics includes descriptions of measures that quantify the "acoustic quality" of rooms for speech and music.

Sound Reinforcement for Audio Engineers

Acoustics and Noise Control provides a detailed and comprehensive introduction to the principles and practice of acoustics and noise control. Since the last edition was published in 1996 there have been many changes and additions to standards, laws and regulations, codes of practice relating to noise, and in noise measurement techniques and noise control technology so this new edition has been fully revised and updated throughout. The book assumes no previous knowledge of the subject and requires only a basic knowledge of mathematics and physics. There are worked examples in the text to aid understanding and a range of experiments help students use complicated apparatus. Thoroughly revised to cover the latest changes in standards, codes of practice and legislation, this new edition covers much of the Institute of Acoustics Diploma syllabus and has an increased emphasis on the legal issues relating to noise control.

Handbook for Sound Engineers

Complete coverage of the science of acoustics and the art of acoustic techniques including room resonances, reflection analysis, comb filters, and the design of audio/video rooms for almost any purpose on acoustical concepts and terminology.

Building Acoustics

This book provides an introductory account of the theory of sound production and propagation and its interactions with solid structures. It includes general theory, diffraction and scattering theory, aerodynamic sound and fluid-structure-acoustic interactions, and a chapter of worked examples. It is intended for a one-semester course on acoustics at the advanced undergraduate or graduate level.

Acoustics and Noise Control

"Many practical suggestions and tips; the examples are meaningful and the illustrations are effective....Destined to become a classic reference that any serious practitioner of ocean acoustics cannot afford to ignore." Revue de livre Authored by four internationally renowned scientists, this volume covers 20 years of progress in computational ocean acoustics and presents the latest numerical techniques used in solving the wave equation in heterogeneous fluid-solid media. The authors detail various computational schemes and illustrate many of the fundamental propagation features via 2-D color displays.

Handbook for Sound Engineers

Introducing the first, self-contained reference on acoustic waveform logging Acoustic measurements in boreholes were first made as a specialized logging technique in geological exploration, but recent advances have greatly expanded the potential applications of this technique. Acoustic Waves in Boreholes provides a thorough review of the theory and interpretation techniques needed to realize these applications, emphasizing the role of guided modes and critically refracted waves in determining the characteristics of recorded waveforms. Topics covered in this comprehensive volume include the seismic properties of rocks; propagation of axisymmetric waves along fluid-filled boreholes in isotropic rocks; and symmetric and nonsymmetric sources in isotropic, transversely isotropic, and porous, permeable formations in open and cased boreholes. Each chapter includes the theory of synthetic microseismogram computation, interpretation and data inversion techniques illustrated using computed seismograms, and case histories using experimental data. Appendices providing the mathematical formulation needed to compute microseismograms, with a single consistent notation used throughout, are also included in appropriate chapters. The wide range of geomechanical properties covered in this book will interest exploration geophysicists, reservoir engineers, civil engineers, geologists, and soil scientists.

The Boundary Element Method in Acoustics

This book offers an overview of models, measurements, calculations and examples connecting musical acoustics and music psychology. Indeed, many mathematical formulations that explain musical acoustics can also be used to help predict human auditory perception.

The Master Handbook of Acoustics

Introducing the first, self-contained reference on acoustic waveform logging Acoustic measurements in boreholes were first made as a specialized logging technique in geological exploration, but recent advances have greatly expanded the potential applications of this technique. Acoustic Waves in Boreholes provides a thorough review of the theory and interpretation techniques needed to realize these applications, emphasizing the role of guided modes and critically refracted waves in determining the characteristics of recorded waveforms. Topics covered in this comprehensive volume include the seismic properties of rocks; propagation of axisymmetric waves along fluid-filled boreholes in isotropic rocks; and symmetric and nonsymmetric sources in isotropic, transversely isotropic, and porous, permeable formations in open and cased boreholes. Each chapter includes the theory of synthetic microseismogram computation, interpretation and data inversion techniques illustrated using computed seismograms, and case histories using experimental data. Appendices providing the mathematical formulation needed to compute microseismograms, with a single consistent notation used throughout, are also included in appropriate chapters. The wide range of geomechanical properties covered in this book will interest exploration geophysicists, reservoir engineers, civil engineers, geologists, and soil scientists.

Acoustics and Aerodynamic Sound

This book delivers a comprehensive and up-to-date treatment of practical applications of metamaterials, structured media, and conventional porous materials. With increasing levels of urbanization, a

growing demand for motorized transport, and inefficient urban planning, environmental noise exposure is rapidly becoming a pressing societal and health concern. Phononic and sonic crystals, acoustic metamaterials, and metasurfaces can revolutionize noise and vibration control and, in many cases, replace traditional porous materials for these applications. In this collection of contributed chapters, a group of international researchers reviews the essentials of acoustic wave propagation in metamaterials and porous absorbers with viscothermal losses, as well as the most recent advances in the design of acoustic metamaterial absorbers. The book features a detailed theoretical introduction describing commonly used modelling techniques such as plane wave expansion, multiple scattering theory, and the transfer matrix method. The following chapters give a detailed consideration of acoustic wave propagation in viscothermal fluids and porous media, and the extension of this theory to non-local models for fluid saturated metamaterials, along with a description of the relevant numerical methods. Finally, the book reviews a range of practical industrial applications, making it especially attractive as a white book targeted at the building, automotive, and aeronautic industries.

Computational Ocean Acoustics

Acoustic Waves in Boreholes

https://chilis.com.pe | Page 10 of 10