Partial Differential Equations Strauss Solution Manual

#Partial Differential Equations Strauss Solution Manual #Strauss PDE solutions #PDE solution manual download #Strauss mathematics answers #solutions to Partial Differential Equations by Strauss

Looking for comprehensive solutions to your Partial Differential Equations problems? This solution manual for Strauss's Partial Differential Equations provides detailed step-by-step answers to all exercises, making it an invaluable resource for students and educators alike. Whether you need to check your work, understand complex derivations, or prepare for exams, these Strauss PDE solutions offer clarity and support for mastering the subject.

Our thesis archive continues to grow with new academic contributions every semester.

We would like to thank you for your visit.

This website provides the document Strauss Pde Solution Manual Download you have been searching for.

All visitors are welcome to download it completely free.

The authenticity of the document is guaranteed.

We only provide original content that can be trusted.

This is our way of ensuring visitor satisfaction.

Use this document to support your needs.

We are always ready to offer more useful resources in the future.

Thank you for making our website your choice.

Across countless online repositories, this document is in high demand.

You are fortunate to find it with us today.

We offer the entire version Strauss Pde Solution Manual Download at no cost.

Partial Differential Equations Strauss Solution Manual

Walter Alexander Strauss (born 1937) is an American applied mathematician, specializing in partial differential equations and nonlinear waves. His research... 14 KB (1,944 words) - 20:50, 7 January 2024

Ordinary differential equations; Partial differential equations; Numerical analysis, mainly devoted to the computation on computers of solutions of ordinary... 167 KB (16,244 words) - 08:54, 14 March 2024 from the harmful effects of breathing molecular oxygen (O 2) at increased partial pressures. Severe cases can result in cell damage and death, with effects... 117 KB (11,913 words) - 02:42, 15 February 2024

that every equation of an even degree must have at least one real quadratic factor, solution of the linear partial differential equation of the second... 109 KB (10,613 words) - 12:38, 2 March 2024

This is a partial list of notable persons who have or had ties to Columbia University. Robert Agostinelli – co-founder of Rhone Group and Friends of Israel... 169 KB (19,420 words) - 17:38, 15 March 2024 of mathematical knowledge, introducing, for instance, the solution of third degree equations, imaginary numbers and operations within the set of complex... 237 KB (25,900 words) - 16:24, 13 March 2024

Partial Differential Equations by Walter Strauss #shorts - Partial Differential Equations by Walter Strauss #shorts by The Math Sorcerer 18,150 views 3 years ago 51 seconds – play Short - Partial Differential Equations, by Walter **Strauss**, #shorts Full Review Here: https://youtu.be/OqmkHkUsC8o This is the book on ...

Advice for Learning Partial Differential Equations - Advice for Learning Partial Differential Equations by The Math Sorcerer 11,757 views 8 months ago 5 minutes, 32 seconds - In this video I discuss learning **partial differential equations**,. I talk about all of the prerequisites you need to know in order to learn ...

Solving Partial Differential Equations With Julia | Chris Rackauckas | JuliaCon 2018 - Solving Partial Differential Equations With Julia | Chris Rackauckas | JuliaCon 2018 by The Julia Programming

Language 22,254 views Streamed 5 years ago 1 hour, 48 minutes - Climate scientists solve fluid dynamics PDEs. Biologists solve reaction-diffusion PDEs. Economists solve optimal control PDEs. Introduction

Overview

What is a PDE

How to represent a PDE

How to solve a PDE

Poisson equation

Computational representation

First derivative

Second derivative

Recap

Choice

Representation

Boundary Conditions

Matrix Multiplication

Real Equation

Work with PD

Summary

Part 1 Summary

Part 1 Discretization

Part 2 Difficu Operators

Finite Element Methods

Finite Elements

Tile

Tile Domain

Matrix

Fennec Scale

Julia Code

Julia FPM

Julia JuMJo

Spectral Methods

Sine Functions

Approximation

Fourier Basis

Derivatives

Subspaces

Lazy Operators

Part 2 Summary

Part 2 Discussion

First Order Differential Equations 1 (Direct Integration method) | Differential Equations. - First Order Differential Equations 1 (Direct Integration method) | Differential Equations. by Excellence Academy 6,581 views 1 year ago 16 minutes - Video teaches how to solve **Differential Equations**, by direct Integration method. Need a tutor? Follow us on Instagram ...

The Brachistochrone, with Steven Strogatz - The Brachistochrone, with Steven Strogatz by 3Blue1Brown 1,282,645 views 7 years ago 16 minutes - Steven Strogatz and I talk about a famous historical math problem, a clever **solution**,, and a modern twist.

Introduction

The problem

Snells law

Difference Between Partial and Total Derivative - Difference Between Partial and Total Derivative by Physics by Alexander FufaeV 499,776 views 1 year ago 1 minute, 44 seconds - https://www.youtube.com/playlist?list=PLTjLwQcqQzNKzSAxJxKpmOtAriFS5wWy4 More: https://en.fufaev.org/questions/1235 ...

The Hard Truth About Intelligence and Learning - The Hard Truth About Intelligence and Learning by The Math Sorcerer 92,313 views 8 months ago 13 minutes, 19 seconds - I discuss intelligence, learning, not being smart enough, and how talent can only take you so far. Do you have any thoughts or ...

Intro

Talent only takes you so far

Embrace everything else you have

Youre not smart enough

Undetermined Coefficients: Solving non-homogeneous ODEs - Undetermined Coefficients: Solving non-homogeneous ODEs by Dr. Trefor Bazett 300,961 views 2 years ago 12 minutes, 44 seconds - How can we solve an ordinary **differential equation**, (ODE) like y"-2y'-3y=3e^2t. The problem is the non-homogeneity on the right ...

Non-homogeneous ODEs

Particular vs Homogeneous Solutions

Finding the Particular Solution

Second Example

Chart of standard guesses

Third Example

Integral x^x from 0 to 1 - Integral x^x from 0 to 1 by Dr Peyam 312,841 views 6 years ago 18 minutes - In this video, I evaluate the integrals of x^x and $x^(-x)$ from 0 to 1. Although there is no explicit formula for this integral, I will still ...

Differential Equation in terms of Dependent Variable (1 of 2: Partial Fractions) - Differential Equation in terms of Dependent Variable (1 of 2: Partial Fractions) by Eddie Woo 44,154 views 5 years ago 10 minutes, 44 seconds - More resources available at www.misterwootube.com.

How to solve PDEs via separation of variables + Fourier series. Chris Tisdell UNSW - How to solve PDEs via separation of variables + Fourier series. Chris Tisdell UNSW by UNSW eLearning 156,531 views 14 years ago 42 minutes - This lecture discusses and solves the **partial differential equation**, (**PDE**₁) known as 'the heat equation" together with some ...

Introduction

Separation of variables

Example

Question

Initial conditions

Questions

Separating variables

Boundary conditions

Big F

Real unequal roots

Linear solution

Superposition

Solution

Characteristic Method - Characteristic Method by Dr Peyam 37,087 views 4 years ago 10 minutes, 19 seconds - Method of characteristics In this video, I show how to solve (basically) all first-order linear **PDE**, by using the method of ...

How to Solve Partial Differential Equations? - How to Solve Partial Differential Equations?

by Physics by Alexander FufaeV 11,338 views 2 years ago 3 minutes, 18 seconds - https://www.voutube.com/playlist?list=Pl Til wQcqQzNKzSAxJxKpmQtAriFS5wWv4 00:00

https://www.youtube.com/playlist?list=PLTjLwQcqQzNKzSAxJxKpmOtAriFS5wWy4 00:00 What is Separation of Variables good for ...

What is Separation of Variables good for?

Example: Separate 1d wave equation

Oxford Calculus: Solving Simple PDEs - Oxford Calculus: Solving Simple PDEs by Tom Rocks Maths 59,152 views 2 years ago 15 minutes - University of Oxford Mathematician Dr Tom Crawford explains how to solve some simple **Partial Differential Equations**, (PDEs) by ...

Simple PDE - Simple PDE by Dr Peyam 37,384 views 4 years ago 6 minutes, 51 seconds - Simple Examples of **Partial Differential Equations**, In this video, I give a couple of simple examples of PDEs, which you can solve ...

PDE 1 | Introduction - PDE 1 | Introduction by commutant 677,286 views 12 years ago 14 minutes, 50 seconds - An introduction to **partial differential equations**, **PDE**, playlist:

http://www.youtube.com/view_play_list?p=F6061160B55B0203 Part ...

Oxford Calculus: Separable Solutions to PDEs - Oxford Calculus: Separable Solutions to PDEs by Tom Rocks Maths 20,424 views 1 year ago 21 minutes - University of Oxford mathematician Dr Tom Crawford explains how to solve PDEs using the method of "separable **solutions**,".

Learning Partial Differential Equations - Learning Partial Differential Equations by The Math Sorcerer 18,430 views 11 months ago 8 minutes, 7 seconds - This is an older book which was reprinted by

Dover. You can use this book to learn **Partial Differential Equations**,. It is called ...

Learn Partial Differential Equations on Your Own - Learn Partial Differential Equations on Your Own by The Math Sorcerer 34,595 views 3 years ago 6 minutes, 51 seconds - In this video I go over a book which can help you learn **partial differential equations**,. The book is called Partial Differential ... But what is a partial differential equation? | DE2 - But what is a partial differential equation? | DE2 by 3Blue1Brown 2,478,099 views 4 years ago 17 minutes - Timestamps: 0:00 - Introduction 3:29 - **Partial**, derivatives 6:52 - Building the heat **equation**, 13:18 - ODEs vs PDEs 14:29 - The ...

Introduction

Partial derivatives

Building the heat equation

ODEs vs PDEs

The laplacian

Book recommendation

it should read "scratch an itch".

Search filters

Keyboard shortcuts

Playback

General

Subtitles and closed captions

Spherical videos

Solution Equations Differential Unique

ODE | Existence and uniqueness idea - ODE | Existence and uniqueness idea by commutant 316,807 views 11 years ago 3 minutes, 52 seconds - Examples and explanations for a course in ordinary differential equations,. ODE playlist: ...

Introduction

When a solution exists

Uniqueness

Existence & Uniqueness Theorem, Ex1 - Existence & Uniqueness Theorem, Ex1 by blackpenredpen 237,849 views 7 years ago 11 minutes, 22 seconds - Existence & **Uniqueness**, Theorem, Ex1 Subscribe for more math for fun videos https://bit.ly/3o2fMNo For more calculus ...

The Big Theorem of Differential Equations: Existence & Uniqueness - The Big Theorem of Differential Equations: Existence & Uniqueness by Dr. Trefor Bazett 165,083 views 3 years ago 12 minutes, 22 seconds - The theory of **differential equations**, works because of a class of theorems called existence and **uniqueness**, theorems. They tell us ...

Intro

Ex: Existence Failing
Ex: Uniqueness Failing

Existence & Uniqueness Theorem

Existence and Uniqueness of Solutions (Differential Equations 11) - Existence and Uniqueness of Solutions (Differential Equations 11) by Professor Leonard 172,374 views 5 years ago 44 minutes - THIS VIDEO CAN SEEM VERY DECEIVING REGARDING CONTINUITY. As I watched this back, after I edited it of course, I noticed ...

Introduction

Solution through a point

Solution through a neighborhood

Uniqueness

Example

Square Roots

Differential Equation

Find the Interval That a Linear First Order Differential Equation Has a Unique Solution - Find the Interval That a Linear First Order Differential Equation Has a Unique Solution by Mathispower4u 105,098 views 11 years ago 8 minutes, 57 seconds - This video explains how to determine the interval that a first order **differential equation**, initial value problem would have a **unique**, ...

Unique Solution - Differential Equations in Action - Unique Solution - Differential Equations in Action by Udacity 9,726 views 11 years ago 53 seconds - This video is part of an online course, **Differential Equations**, in Action. Check out the course here: ...

Existence & Uniqueness of Solutions | Numericals | Higher Order Differential Equations | Maths -

Existence & Uniqueness of Solutions | Numericals | Higher Order Differential Equations | Maths by Gautam Varde 19,133 views 1 year ago 13 minutes, 15 seconds - problems on existence and **Uniqueness**, of **solutions**,. higher order **differential Equations**, #Maths2 #differentialequations ... Find the Region a First Order Differential Equation Has a Unique Solution Through a Point - Part 2 - Find the Region a First Order Differential Equation Has a Unique Solution Through a Point - Part 2 by Mathispower4u 15,692 views 11 years ago 4 minutes, 38 seconds - This video explains how to determine the region in the xy plane that a first order **differential equation**, would have a **unique solution**, ...

Find the Region a First Order Differential Equation Has a Unique Solution at a Point - Part 1 - Find the Region a First Order Differential Equation Has a Unique Solution at a Point - Part 1 by Mathispower4u 44,614 views 11 years ago 5 minutes, 47 seconds - This video explains how to determine the region in the xy plane that a first order **differential equation**, would have a **unique solution**, ...

Example

Find the Partial Derivative of F with Respect to Y

Partial Derivative

A deceivingly difficult differential equation - A deceivingly difficult differential equation by Michael Penn 239,593 views 1 year ago 16 minutes - To get started for free, visit https://brilliant.org/MichaelPenn/ Support the channel Patreon: ...

Initial Value Problem - Initial Value Problem by The Organic Chemistry Tutor 712,545 views 4 years ago 5 minutes, 46 seconds - This calculus video tutorial explains how to solve the initial value problem as it relates to separable **differential equations**,.

General Solution to the Differential Equation

Find the Antiderivative of both Expressions

Solution to the Initial Value Problem

One Solution, No Solution, or Infinitely Many Solutions - Consistent & Inconsistent Systems - One Solution, No Solution, or Infinitely Many Solutions - Consistent & Inconsistent Systems by The Organic Chemistry Tutor 844,241 views 6 years ago 7 minutes, 30 seconds - This algebra video tutorial explains how to determine if a system of **equations**, contain one **solution**,, no **solution**,, or infinitely many ...

No Solution

Many Solutions

3x plus 2y Is Equal to 5 and 6x plus 4y Is Equal to 8 Is There Going To Be One Solution Differential equations, a tourist's guide | DE1 - Differential equations, a tourist's guide | DE1 by 3Blue1Brown 3,863,172 views 4 years ago 27 minutes - Error correction: At 6:27, the upper **equation**, should have g/L instead of L/g. Steven Strogatz NYT article on the math of love: ...

Physics Students Need to Know These 5 Methods for Differential Equations - Physics Students Need to Know These 5 Methods for Differential Equations by Physics with Elliot 922,975 views 1 year ago 30 minutes - Almost every physics problem eventually comes down to **solving**, a **differential equation**,. But **differential equations**, are really hard!

Introduction

The equation

- 1: Ansatz
- 2: Energy conservation
- 3: Series expansion
- 4: Laplace transform
- 5: Hamiltonian Flow

Matrix Exponential

Wrap Up

Finding Particular Solutions of Differential Equations Given Initial Conditions - Finding Particular Solutions of Differential Equations Given Initial Conditions by The Organic Chemistry Tutor 251,877 views 6 years ago 12 minutes, 52 seconds - This calculus video tutorial explains how to find the particular **solution**, of a **differential equation**, given the initial conditions.

begin by finding the antiderivative of both sides

begin by finding the antiderivative

determine a function for f of x

write the general equation for f prime of x

use a different constant of integration

General Solution | Solving Trig Equations | Mlungisi Nkosi - General Solution | Solving Trig Equations | Mlungisi Nkosi by Mlungisi Nkosi 98,025 views 1 year ago 5 minutes, 47 seconds - Determine the

general solution, of a trig equation,.

Abel's brilliant trick for solving differential equations - Abel's brilliant trick for solving differential equations by Maths 505 7,138 views 1 day ago 12 minutes, 28 seconds - Abel's method is an interesting approach to **solving**, 2nd order linear **differential equations**, using the Wronskian. Here's a nice ...

Verifying Solutions to Differential Equations - Verifying Solutions to Differential Equations by Mathispower4u 117,702 views 12 years ago 10 minutes, 39 seconds - This video verifies **solutions**, to **differential equations**, when given the a function **solution**,. Search Library at ...

Verify that Y Equals Four Cosine 2x plus 6 Sine 2x Is a Solution to Y Double Prime Plus 4y Verify the Solution

Verifying the Given Function Is a Solution to the Differential

First order, Ordinary Differential Equations. - First order, Ordinary Differential Equations. by Math by LEO 557,392 views 5 years ago 48 minutes - Contact info: MathbyLeo@gmail.com First Order, Ordinary **Differential Equations solving**, techniques: 1- Separable **Equations**, 2- ...

2- Homogeneous Method

3- Integrating Factor

How to determine the general solution to a differential equation - How to determine the general solution to a differential equation by Brian McLogan 350,437 views 5 years ago 2 minutes, 3 seconds - Learn how to solve the particular **solution**, of **differential equations**,. A **differential equation**, is an **equation**, that relates a function with ...

Second Order Linear Differential Equations - Second Order Linear Differential Equations by The Organic Chemistry Tutor 1,013,944 views 4 years ago 25 minutes - This Calculus 3 video tutorial provides a basic introduction into second order linear **differential equations**,. It provides 3 cases that ...

... To Solve Second Order Linear Differential Equations, ...

Quadratic Formula

The General Solution to the Differential Equation

The General Solution

General Solution of the Differential Equation

The Quadratic Formula

General Solution for Case Number Three

Write the General Solution of the Differential Equation

Boundary Value Problem

Differential Equations - Existence and Uniqueness Theorem - Differential Equations - Existence and Uniqueness Theorem by Farrington Math 15,118 views 4 years ago 7 minutes, 23 seconds - For the initial value problem $3(dy/dx) = x^2 - xy^3$, y(1)=6, does Theorem 1 imply the existence of a **unique solution**,? For the initial ...

Verifying solutions to differential equations | AP Calculus AB | Khan Academy - Verifying solutions to differential equations | AP Calculus AB | Khan Academy by Khan Academy 88,755 views 5 years ago 5 minutes, 52 seconds - We can check whether a potential **solution**, to a **differential equation**, is indeed a **solution**,. What we need to do is differentiate and ...

Solution of differential equation (general and particular solution) - Solution of differential equation (general and particular solution) by ENG-School 15,162 views 1 year ago 2 minutes, 3 seconds - learn the meaning and concept of the **solution**, through **solving**, an example and finding general and particular **solutions**,.

Existence of a Unique Solution to a First-Order Initial-Value Problem (IVP) Examples - Existence of a Unique Solution to a First-Order Initial-Value Problem (IVP) Examples by James Wenson 8,058 views 2 years ago 23 minutes - Determine a region of the xy-plane for which the given **differential equation**, would have a **unique solution**, whose graph passes ...

The Theory of 2nd Order ODEs // Existence & Uniqueness, Superposition, & Linear Independence - The Theory of 2nd Order ODEs // Existence & Uniqueness, Superposition, & Linear Independence by Dr. Trefor Bazett 48,442 views 3 years ago 11 minutes, 19 seconds - Previously in our ODE playlist, we've studied 1st order differential equations,. Now we move to second order differential equations,, ...

Linear ODEs

Existence 7 Uniqueness

Superposition

Linear Independence

General Solution

Existence & Uniqueness Theorem, Ex1.5 - Existence & Uniqueness Theorem, Ex1.5 by blackpenred-pen 15,720 views 7 years ago 7 minutes, 47 seconds - Existence & **Uniqueness**, Theorem for **differential equations**,. Subscribe for more math for fun videos https://bit.ly/3o2fMNo For ...

Search filters

Keyboard shortcuts

Playback

General

Subtitles and closed captions

Spherical videos

differential equations by schaum series solution manual

Series solution of a differential equation | Lecture 36 | Differential Equations for Engineers - Series solution of a differential equation | Lecture 36 | Differential Equations for Engineers by Jeffrey Chasnov 37,397 views 5 years ago 17 minutes - Power **series solution**, of a homogeneous, linear **differential equation**, Join me on Coursera: ...

The Method of Series Solutions

General Solution

Shifting the Index of the Power Series

Recursion Relation

Aries Equation

Differential Equations | Series solution for a second order linear differential equation. - Differential Equations | Series solution for a second order linear differential equation. by Michael Penn 16,470 views 4 years ago 18 minutes - We find a **series solution**, for a second order linear **differential equation**, http://www.michael-penn.net ...

Schaum's Outlines on Differential Equations - Schaum's Outlines on Differential Equations by The Internet Sorcerer 551 views 2 years ago 46 seconds - In this video I talk about a nice book on **differential equations**,. This is **Schaum's**, Outlines on **Differential Equations**,. Here it is ... Edexcel A level Maths: 11.10 Solving Differential Equations (Part 1) - Edexcel A level Maths: 11.10 Solving Differential Equations (Part 1) by Zeeshan Zamurred 34,287 views 4 years ago 14 minutes, 7 seconds - Pearson A level Maths, Pure Maths Yr 2 textbook (11.10) In this video I explain how to find the general **solution**, to a **differential**, ...

Find the General Solution to the Differential Equation

Solve a Differential Equation

Writing the Differential Equation

Laws of Indices

General Solution to Differential Equations

Separating the Variables

Question 2

General Solution to this Differential Equation

The General Solution to the Differential Equation

Reverse Chain Rule

Using Integration by Parts

Series Solution Differential Equations (Example 2) - Series Solution Differential Equations (Example 2) by livelaughlearn 107,449 views 8 years ago 30 minutes - Let me know any other topics you'd like to see covered.

Intro

Clean Up

Reindexing

Writing Out Terms

Writing Out Series

Writing Out Group

Higher Power Index

First order, Ordinary Differential Equations. - First order, Ordinary Differential Equations. by Math by LEO 550,072 views 5 years ago 48 minutes - Contact info: MathbyLeo@gmail.com First Order, Ordinary **Differential Equations solving**, techniques: 1- Separable Equations 2- ...

- 2- Homogeneous Method
- 3- Integrating Factor
- 4- Exact Differential Equations

Undetermined Coefficients: Solving non-homogeneous ODEs - Undetermined Coefficients: Solving non-homogeneous ODEs by Dr. Trefor Bazett 292,934 views 2 years ago 12 minutes, 44 seconds - How can we solve an ordinary **differential equation**, (ODE) like y"-2y'-3y=3e^2t. The problem is the non-homogeneity on the right ...

Non-homogeneous ODEs

Particular vs Homogeneous Solutions

Finding the Particular Solution

Second Example

Chart of standard guesses

Third Example

The Deceptive Nature of Arc Length and Why Students Struggle With It - The Deceptive Nature of Arc Length and Why Students Struggle With It by Math The World 18,809 views 2 days ago 9 minutes, 57 seconds - This video dives deep into the topic of finding Arc Length using Integration techniques from Calculus. It answers the question "Why ...

01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations. -

01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations. by Math and Science 560,154 views 8 years ago 41 minutes - In this lesson the student will learn what a **differential equation**, is and how to solve them.

4 Types of ODE's: How to Identify and Solve Them - 4 Types of ODE's: How to Identify and Solve Them by Engineering Empowerment 202,366 views 8 years ago 6 minutes, 57 seconds - Hi everyone so in this video I'm going to talk about four kinds of **differential equations**, that you need to be able to identify them and ...

How To Solve First Order Homogeneous Differential Equation - How To Solve First Order Homogeneous Differential Equation by Tambuwal Maths Class 99,784 views 3 years ago 8 minutes, 33 seconds - This looks simple enough, but we find that we cannot express the RHS in the form of 'x-factors' and 'y-factors', so we cannot solve ...

Learn Mathematics from START to FINISH (2nd Edition) - Learn Mathematics from START to FINISH (2nd Edition) by The Math Sorcerer 801,258 views 1 year ago 37 minutes - In this video I will show you how to learn mathematics from start to finish. I will give you three different ways to get started with ...

Algebra

Pre-Algebra Mathematics

Start with Discrete Math

Concrete Mathematics by Graham Knuth and Patashnik

How To Prove It a Structured Approach by Daniel Velman

College Algebra by Blitzer

A Graphical Approach to Algebra and Trigonometry

Pre-Calculus Mathematics

Tomas Calculus

Multi-Variable Calculus

Differential Equations

The Shams Outline on Differential Equations

Probability and Statistics

Elementary Statistics

Mathematical Statistics and Data Analysis by John Rice

A First Course in Probability by Sheldon Ross

Geometry

Geometry by Jurgensen

Linear Algebra

Partial Differential Equations

Abstract Algebra

First Course in Abstract Algebra

Contemporary Abstract Algebra by Joseph Galleon

Abstract Algebra Our First Course by Dan Serachino

Advanced Calculus or Real Analysis

Principles of Mathematical Analysis and It

Advanced Calculus by Fitzpatrick

Advanced Calculus by Buck

Books for Learning Number Theory

Introduction to Topology by Bert Mendelson

Topology

All the Math You Missed but Need To Know for Graduate School

Cryptography

The Legendary Advanced Engineering Mathematics by Chrysig

Real and Complex Analysis

Basic Mathematics

Frobenius Method Example 1 - Frobenius Method Example 1 by Daniel An 178,269 views 7 years ago 28 minutes - My lecture videos are organized at: http://100worksheets.com/mathingsconsidered.html.

Initial Equation

Apply the Initial Equation

Recurrence Relation

Become An Electrical Lineworker - Become An Electrical Lineworker by YUKI@TTF POWER 2,044,697 views 1 year ago 24 seconds – play Short - Hey Everyone! Respect To All Peoples Who Work Hard Don't forget to drop a along with where you're watching from!

First order homogenous equations | First order differential equations | Khan Academy - First order homogenous equations | First order differential equations | Khan Academy by Khan Academy 1,020,345 views 15 years ago 7 minutes, 22 seconds - Introduction to first order homogenous equations,. Watch the next lesson: ...

Homogeneous Differential Equation

What Does a Homogeneous Differential Equation Mean

What Does It Mean To Be Homogeneous

Example of a series solution of a differential equation - Example of a series solution of a differential equation by Daniel An 13,811 views 7 years ago 18 minutes - And then four plus one is five and it's 18 so I've 1883 plus 581 equals these are the first two **equations**, then you get out of the first ... Separable First Order Differential Equations - Basic Introduction - Separable First Order Differential Equations - Basic Introduction by The Organic Chemistry Tutor 1,654,569 views 7 years ago 10 minutes, 42 seconds - This calculus video tutorial explains how to solve first order **differential equations**, using separation of variables. It explains how to ...

focus on solving differential equations by means of separating variables

integrate both sides of the function

take the cube root of both sides

find a particular solution

place both sides of the function on the exponents of e

find the value of the constant c

start by multiplying both sides by dx

take the tangent of both sides of the equation

Differential equation introduction | First order differential equations | Khan Academy - Differential equation introduction | First order differential equations | Khan Academy by Khan Academy 2,814,008 views 9 years ago 7 minutes, 49 seconds - Differential Equations, on Khan Academy: **Differential equations**, separable equations, exact equations, integrating factors, ...

What are differential equations

Solution to a differential equation

Examples of solutions

How to determine the general solution to a differential equation - How to determine the general solution to a differential equation by Brian McLogan 346,391 views 5 years ago 2 minutes, 3 seconds - Learn how to solve the particular **solution**, of **differential equations**,. A **differential equation**, is an equation that relates a function with ...

Power Series Solutions to Differential Equations - Series Method for Solving Differential Equations - Power Series Solutions to Differential Equations - Series Method for Solving Differential Equations by Calculus 12,699 views 1 year ago 18 minutes - In mathematics, the power **series**, method is used to seek a power **series solution**, to certain **differential equations**,. In general, such ...

How to solve ANY differential equation - How to solve ANY differential equation by Dr Chris Tisdell 920,226 views 11 years ago 5 minutes, 5 seconds - Free ebook http://tinyurl.com/EngMathYT Easy way of remembering how to solve ANY **differential equation**, of first order in calculus ...

form a separable differential equation

form an integrating factor e to the integral of p

analyzing differential equations

Introduction to series solutions to differential equations (part 1) - Introduction to series solutions to differential equations (part 1) by Daniel An 8,841 views 7 years ago 22 minutes - That's why serious **solutions**, are needed when you're working with non custom constant-coefficient **differential equation**, then it's ...

Finding Particular Solutions of Differential Equations Given Initial Conditions - Finding Particular Solutions of Differential Equations Given Initial Conditions by The Organic Chemistry Tutor 248,067 views 5 years ago 12 minutes, 52 seconds - This calculus video tutorial explains how to find the particular **solution**, of a **differential equation**, given the initial conditions.

begin by finding the antiderivative of both sides

begin by finding the antiderivative

determine a function for f of x

write the general equation for f prime of x

use a different constant of integration

Search filters

Keyboard shortcuts

Playback

General

Subtitles and closed captions

Spherical videos

possible solutions of the equation in question. The finite element method is an important numerical method to solve partial differential equations, widely... 106 KB (13,140 words) - 11:59, 10 February 2024

equations are special because they are nonlinear differential equations with known exact solutions. A famous special case of the Bernoulli equation is... 270 KB (31,768 words) - 20:34, 6 November 2023 (1999), Schaum's outline of theory and problems of elements of statistics. I, Descriptive statistics and probability, Schaum's outline series, New York.... 98 KB (11,536 words) - 13:15, 7 March 2024 nanometre in size. Navier—Stokes equations In physics, the Navier—Stokes equations are a set of partial differential equations which describe the motion of... 252 KB (31,100 words) - 11:29, 20 February 2024 Bartlett Publishers. p. 128. ISBN 978-0-86720-479-7. Arthur Beiser (2004). Schaum's Outline of Applied Physics. New York: McGraw-Hill Professional. p. 103... 52 KB (7,793 words) - 07:20, 8 December 2023 signal processing. Other key advances in automatic controls include differential equations, stability theory and system theory (1938), frequency domain analysis... 105 KB (12,515 words) - 02:48, 22 February 2024

Partial Differential Equations, Student Solutions Manual

Practice partial differential equations with this student solutions manual Corresponding chapter-by-chapter with Walter Strauss's Partial Differential Equations, this student solutions manual consists of the answer key to each of the practice problems in the instructional text. Students will follow along through each of the chapters, providing practice for areas of study including waves and diffusions, reflections and sources, boundary problems, Fourier series, harmonic functions, and more. Coupled with Strauss's text, this solutions manual provides a complete resource for learning and practicing partial differential equations.

Partial Differential Equations

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Solution Manual for Partial Differential Equations for Scientists and Engineers

Originally published by John Wiley and Sons in 1983, Partial Differential Equations for Scientists and Engineers was reprinted by Dover in 1993. Written for advanced undergraduates in mathematics, the widely used and extremely successful text covers diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Dover's 1993 edition, which contains answers to selected problems, is now supplemented by this complete solutions manual.

Introduction to Partial Differential Equations

Combining both the classical theory and numerical techniques for partial differential equations, this thoroughly modern approach shows the significance of computations in PDEs and illustrates the strong interaction between mathematical theory and the development of numerical methods. Great care has been taken throughout the book to seek a sound balance between these techniques. The authors present the material at an easy pace and exercises ranging from the straightforward to the challenging have been included. In addition there are some "projects" suggested, either to refresh the students memory of results needed in this course, or to extend the theories developed in the text. Suitable for undergraduate and graduate students in mathematics and engineering.

Introduction to Partial Differential Equations

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.

An Introduction to Partial Differential Equations

Partial differential equations are fundamental to the modeling of natural phenomena. The desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians and has inspired such diverse fields as complex function theory, functional analysis, and algebraic topology. This book, meant for a beginning graduate audience, provides a thorough introduction to partial differential equations.

Applied Partial Differential Equations

This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems;' The audience usually consists of stu dents in mathematics, engineering, and the physical sciences. The topics include derivations of some of the standard equations of mathemati cal physics (including the heat equation, the- wave equation, and the Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions or separation of variables, and methods based on Fourier and Laplace transforms. Prerequisites include calculus and a post-calculus differential equations course. There are several excellent texts for this course, so one can legitimately ask why one would wish to write another. A survey of the content of the existing titles shows that their scope is broad and the analysis detailed; and they often exceed five hundred pages in length. These books gen erally have enough material for two, three, or even four semesters. Yet, many undergraduate courses are one-semester courses. The author has often felt that students become a little uncomfortable when an instructor jumps around in a long volume searching for the right topics, or only par tially covers some topics; but they are secure in completely mastering a short, well-defined

introduction. This text was written to proVide a brief, one-semester introduction to partial differential equations.

Principles of Partial Differential Equations

This concise book covers the classical tools of Partial Differential Equations Theory in today's science and engineering. The rigorous theoretical presentation includes many hints, and the book contains many illustrative applications from physics.

Partial Differential Equations: Graduate Level Problems and Solutions

Partial Differential Equations: Graduate Level Problems and SolutionsBy Igor Yanovsky

Linear Partial Differential Equations for Scientists and Engineers

This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.

Introduction to Partial Differential Equations

This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise. Within each section the author creates a narrative that answers the five questions: What is the scientific problem we are trying to understand? How do we model that with PDE? What techniques can we use to analyze the PDE? How do those techniques apply to this equation? What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.

Advanced Calculus

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades. This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis. The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives. In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

Beginning Partial Differential Equations

A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible, combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and

the use of characteristics to solve nonhomogeneous problems. The Third Edition is organized around four themes: methods of solution for initial-boundary value problems; applications of partial differential equations; existence and properties of solutions; and the use of software to experiment with graphics and carry out computations. With a primary focus on wave and diffusion processes, Beginning Partial Differential Equations, Third Edition also includes: Proofs of theorems incorporated within the topical presentation, such as the existence of a solution for the Dirichlet problem The incorporation of MapleTM to perform computations and experiments Unusual applications, such as Poe's pendulum Advanced topical coverage of special functions, such as Bessel, Legendre polynomials, and spherical harmonics Fourier and Laplace transform techniques to solve important problems Beginning of Partial Differential Equations, Third Edition is an ideal textbook for upper-undergraduate and first-year graduate-level courses in analysis and applied mathematics, science, and engineering.

Introduction to Optimal Control Theory

This monograph is an introduction to optimal control theory for systems governed by vector ordinary differential equations. It is not intended as a state-of-the-art handbook for researchers. We have tried to keep two types of reader in mind: (1) mathematicians, graduate students, and advanced undergraduates in mathematics who want a concise introduction to a field which contains nontrivial interesting applications of mathematics (for example, weak convergence, convexity, and the theory of ordinary differential equations); (2) economists, applied scientists, and engineers who want to understand some of the mathematical foundations, of optimal control theory. In general, we have emphasized motivation and explanation, avoiding the "definition-axiom-theorem-proof" approach. We make use of a large number of examples, especially one simple canonical example which we carry through the entire book. In proving theorems, we often just prove the simplest case, then state the more general results which can be proved. Many of the more difficult topics are discussed in the "Notes" sections at the end of chapters and several major proofs are in the Appendices. We feel that a solid understanding of basic facts is best attained by at first avoiding excessive generality. We have not tried to give an exhaustive list of references, preferring to refer the reader to existing books or papers with extensive bibliographies. References are given by author's name and the year of publication, e.g., Waltman [1974].

Introduction to Partial Differential Equations

Quantities, Units and Symbols in Physical Chemistry Third Edition The first IUPAC Manual of Symbols and Terminology for Physicochemical Quantities and Units (the "Green Book") of which this is a successor, was published in 1969, with the objective of 'securing clarity and precision, and wider agreement in the use of symbols, by chemists in different countries, among physicists, chemists and engineers, and by editors of scientific journals'. Subsequent revisions have taken account of many developments in the field, culminating in the major extension and revision represented by the 1988 edition under the title Quantities, Units and Symbols in Physical Chemistry. This third edition (2007) is a further revision of the material which reflects the experience of the contributors and users with the previous editions. The book has been systematically brought up to date and new sections have been added. It strives to improve the exchange of scientific information between different disciplines in the international pursuit of scientific research. In a rapidly expanding scientific literature where each discipline has a tendency to retreat into its own jargon, this book attempts to provide a compilation of widely used terms and symbols from many sources together with brief understandable definitions and explanations of best practice. Tables of important fundamental constants and conversion factors are included. Precise scientific language encoded by appropriate definitions of quantities, units and symbols is crucial for the international exchange in science and technology, with important consequences for modern industrial economy. This is the definitive guide for scientists, science publishers and organizations working across a multitude of disciplines requiring internationally approved nomenclature in the area of Physical Chemistry.

Quantities, Units and Symbols in Physical Chemistry

An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order

equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors

Partial Differential Equations

Superb introduction devotes almost half its pages to numerical methods for solving partial differential equations, while the heart of the book focuses on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included, with solutions for many at end of book. For students with little background in linear algebra, a useful appendix covers that subject briefly.

Applied Partial Differential Equations

This text offers students in mathematics, engineering, and the applied sciences a solid foundation for advanced studies in mathematics. Classical topics presented in a modern context include coverage of integral equations and basic scattering theory. Includes examples of inverse problems arising from improperly posed applications as well as exercises, many with answers. 1988 edition.

Partial Differential Equations

This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

Introduction to Partial Differential Equations with Applications

This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra - all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently discussed in detail. Based on the author's modeling and simulation experience in science and engineering and as a consultant, the book answers such basic questions as: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? The book relies exclusively upon open-source software which is available to everybody free of charge. The entire book software - including 3D CFD and structural mechanics simulation software - can be used based on a free CAELinux-Live-DVD that is available in the Internet (works on most machines and operating systems).

Mathematical Modeling and Simulation

The second edition of Introduction to Partial Differential Equations, which originally appeared in the Princeton series Mathematical Notes, serves as a text for mathematics students at the intermediate graduate level. The goal is to acquaint readers with the fundamental classical results of partial differential equations and to guide them into some aspects of the modern theory to the point where they will be equipped to read advanced treatises and research papers. This book includes many more exercises than the first edition, offers a new chapter on pseudodifferential operators, and contains additional material throughout. The first five chapters of the book deal with classical theory: first-order equations, local existence theorems, and an extensive discussion of the fundamental differential equations of mathematical physics. The techniques of modern analysis, such as distributions and Hilbert spaces, are used wherever appropriate to illuminate these long-studied topics. The last three chapters introduce the modern theory: Sobolev spaces, elliptic boundary value problems, and pseudodifferential operators.

Introduction to Partial Differential Equations

Following in the footsteps of the authors' bestselling Handbook of Integral Equations and Handbook of Exact Solutions for Ordinary Differential Equations, this handbook presents brief formulations and exact solutions for more than 2,200 equations and problems in science and engineering. Parabolic, hyperbolic, and elliptic equations with

Handbook of Linear Partial Differential Equations for Engineers and Scientists

An in-depth look at real analysis and its applications-now expanded and revised. This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory. This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include: * Revised material on the n-dimensional Lebesgue integral. * An improved proof of Tychonoff's theorem. * Expanded material on Fourier analysis. * A newly written chapter devoted to distributions and differential equations. * Updated material on Hausdorff dimension and fractal dimension.

Real Analysis

This example-rich reference fosters a smooth transition from elementary ordinary differential equations to more advanced concepts. Asmar's relaxed style and emphasis on applications make the material accessible even to readers with limited exposure to topics beyond calculus. Encourages computer for illustrating results and applications, but is also suitable for use without computer access. Contains more engineering and physics applications, and more mathematical proofs and theory of partial differential equations, than the first edition. Offers a large number of exercises per section. Provides marginal comments and remarks throughout with insightful remarks, keys to following the material, and formulas recalled for the reader's convenience. Offers Mathematica files available for download from the author's website. A useful reference for engineers or anyone who needs to brush up on partial differential equations.

Partial Differential Equations with Fourier Series and Boundary Value Problems

Distribution theory, a relatively recent mathematical approach to classical Fourier analysis, not only opened up new areas of research but also helped promote the development of such mathematical disciplines as ordinary and partial differential equations, operational calculus, transformation theory, and functional analysis. This text was one of the first to give a clear explanation of distribution theory: it combines the theory effectively with extensive practical applications to science and engineering problems. Based on a graduate course given at the State University of New York at Stony Brook, this book has two objectives: to provide a comparatively elementary introduction to distribution theory and to describe the generalized Fourier and Laplace transformations and their applications to integrodifferential equations, difference equations, and passive systems. After an introductory chapter defining distributions and the operations that apply to them, Chapter 2 considers the calculus of distributions, especially limits, differentiation, integrations, and the interchange of limiting processes. Some deeper properties of distributions, such as their local character as derivatives of continuous functions, are given in Chapter 3. Chapter 4 introduces the distributions of slow growth, which arise naturally in the generalization of the Fourier transformation. Chapters 5 and 6 cover the convolution process and its use in representing differential and difference equations. The distributional Fourier and Laplace transformations are developed in Chapters 7 and 8, and the latter transformation is applied in Chapter 9 to obtain an operational calculus for the solution of differential and difference equations of the initial-condition type. Some of the previous theory is applied in Chapter 10 to a discussion of the fundamental properties of certain physical systems, while Chapter 11 ends the book with a consideration of periodic distributions. Suitable for a graduate course for engineering and science students or for a senior-level undergraduate course for mathematics majors, this book presumes a knowledge of advanced calculus and the standard theorems on the interchange of limit processes. A broad spectrum of problems has been included to satisfy the diverse needs of various types of students.

Distribution Theory and Transform Analysis

The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.

Econometric Analysis of Cross Section and Panel Data, second edition

With this book, even readers unfamiliar with the field can acquire sufficient background to understand research literature related to the theory of parabolic and elliptic equations. 1964 edition.

Partial Differential Equations of Parabolic Type

The high-level language of R is recognized as one of the mostpowerful and flexible statistical software environments, and israpidly becoming the standard setting for quantitative analysis, statistics and graphics. R provides free access to unrivalledcoverage and cutting-edge applications, enabling the user to applynumerous statistical methods ranging from simple regression to timeseries or multivariate analysis. Building on the success of the author's bestsellingStatistics: An Introduction using R, The R Book ispacked with worked examples, providing an all inclusive guide to R,ideal for novice and more accomplished users alike. The bookassumes no background in statistics or computing and introduces theadvantages of the R environment, detailing its applications in awide range of disciplines. Provides the first comprehensive reference manual for the Rlanguage, including practical guidance and full coverage of thegraphics facilities. Introduces all the statistical models covered by R, beginningwith simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression andanalysis of variance, through to generalized linear models, generalized mixed models, time series, spatial statistics, multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates andprofessionals in science, engineering and medicine. It is alsoideal for students and professionals in statistics, economics, geography and the social sciences.

The R Book

Graduate-level exposition by noted Russian mathematician offers rigorous, readable coverage of classification of equations, hyperbolic equations, elliptic equations, and parabolic equations. Translated from the Russian by A. Shenitzer.

Lectures on Partial Differential Equations

Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology,

the book anticipates potential difficulties in understanding the various solution steps and provides all the necessary details. Topical coverage includes: First-Order Differential Equations Higher-Order Linear Equations Applications of Higher-Order Linear Equations Systems of Linear Differential Equations Laplace Transform Series Solutions Systems of Nonlinear Differential Equations In addition to plentiful exercises and examples throughout, each chapter concludes with a summary that outlines key concepts and techniques. The book's design allows readers to interact with the content, while hints, cautions, and emphasis are uniquely featured in the margins to further help and engage readers. Written in an accessible style that includes all needed details and steps, Ordinary Differential Equations is an excellent book for courses on the topic at the upper-undergraduate level. The book also serves as a valuable resource for professionals in the fields of engineering, physics, and mathematics who utilize differential equations in their everyday work. An Instructors Manual is available upon request. Email sfriedman@wiley.com for information. There is also a Solutions Manual available. The ISBN is 9781118398999.

Ordinary Differential Equations

Engineering Mathematics with Examples and Applications provides a compact and concise primer in the field, starting with the foundations, and then gradually developing to the advanced level of mathematics that is necessary for all engineering disciplines. Therefore, this book's aim is to help undergraduates rapidly develop the fundamental knowledge of engineering mathematics. The book can also be used by graduates to review and refresh their mathematical skills. Step-by-step worked examples will help the students gain more insights and build sufficient confidence in engineering mathematics and problem-solving. The main approach and style of this book is informal, theorem-free, and practical. By using an informal and theorem-free approach, all fundamental mathematics topics required for engineering are covered, and readers can gain such basic knowledge of all important topics without worrying about rigorous (often boring) proofs. Certain rigorous proof and derivatives are presented in an informal way by direct, straightforward mathematical operations and calculations, giving students the same level of fundamental knowledge without any tedious steps. In addition, this practical approach provides over 100 worked examples so that students can see how each step of mathematical problems can be derived without any gap or jump in steps. Thus, readers can build their understanding and mathematical confidence gradually and in a step-by-step manner. Covers fundamental engineering topics that are presented at the right level, without worry of rigorous proofs Includes step-by-step worked examples (of which 100+ feature in the work) Provides an emphasis on numerical methods, such as root-finding algorithms, numerical integration, and numerical methods of differential equations Balances theory and practice to aid in practical problem-solving in various contexts and applications

Engineering Mathematics with Examples and Applications

Superb treatment for math and physical science students discusses modern mathematical techniques for setting up and analyzing problems. Discusses partial differential equations of the 1st order, elementary modeling, potential theory, parabolic equations, more. 1988 edition.

Partial Differential Equations of Mathematical Physics and Integral Equations

The primary goal of this text is to present the theoretical foundation of the field of Fourier analysis. This book is mainly addressed to graduate students in mathematics and is designed to serve for a three-course sequence on the subject. The only prerequisite for understanding the text is satisfactory completion of a course in measure theory, Lebesgue integration, and complex variables. This book is intended to present the selected topics in some depth and stimulate further study. Although the emphasis falls on real variable methods in Euclidean spaces, a chapter is devoted to the fundamentals of analysis on the torus. This material is included for historical reasons, as the genesis of Fourier analysis can be found in trigonometric expansions of periodic functions in several variables. While the 1st edition was published as a single volume, the new edition will contain 120 pp of new material, with an additional chapter on time-frequency analysis and other modern topics. As a result, the book is now being published in 2 separate volumes, the first volume containing the classical topics (Lp Spaces, Littlewood-Paley Theory, Smoothness, etc...), the second volume containing the modern topics (weighted inequalities, wavelets, atomic decomposition, etc...). From a review of the first edition: "Grafakos's book is very user-friendly with numerous examples illustrating the definitions and ideas. It is more suitable for readers who want to get a feel for current research. The treatment is thoroughly

modern with free use of operators and functional analysis. Morever, unlike many authors, Grafakos has clearly spent a great deal of time preparing the exercises." - Ken Ross, MAA Online

Classical Fourier Analysis

This book has been designed for Undergraduate (Honours) and Postgraduate students of various Indian Universities. A set of objective problems has been provided at the end of each chapter which will be useful to the aspirants of competitive examinations

Ordinary and Partial Differential Equations

Radiative Processes in Astrophysics: This clear, straightforward, and fundamental introduction is designed to present-from a physicist's point of view-radiation processes and their applications to astrophysical phenomena and space science. It covers such topics as radiative transfer theory, relativistic covariance and kinematics, bremsstrahlung radiation, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms. Discussion begins with first principles, physically motivating and deriving all results rather than merely presenting finished formulae. However, a reasonably good physics background (introductory quantum mechanics, intermediate electromagnetic theory, special relativity, and some statistical mechanics) is required. Much of this prerequisite material is provided by brief reviews, making the book a self-contained reference for workers in the field as well as the ideal text for senior or first-year graduate students of astronomy, astrophysics, and related physics courses. Radiative Processes in Astrophysics also contains about 75 problems, with solutions, illustrating applications of the material and methods for calculating results. This important and integral section emphasizes physical intuition by presenting important results that are used throughout the main text; it is here that most of the practical astrophysical applications become apparent.

Radiative Processes in Astrophysics

Mathematics forms bridges between knowledge, tradition, and contemporary life. The continuous development and growth of its many branches, both classical and modern, permeates and fertilizes all aspects of applied science and technology, and so has a vital impact on our modern society. The book will focus on these aspects and will benefit from the contribution of several world-famous scientists from mathematics and related sciences, such as: Ralph Abraham, Andrew Crumey, Peter Markowich, Claudio Procesi, Clive Ruggles, Ismail Serageldin, Amin Shokrollahi, Tobias Wallisser.

MATHKNOW

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Nonlinear Dynamics and Chaos

"First published by Cappella Archive in 2008."

The Physics of Quantum Mechanics

Rich in proofs, examples, and exercises, this widely adopted text emphasizes physics and engineering applications. The Student Solutions Manual can be downloaded free from Dover's site; the Instructor Solutions Manual is available upon request. 2004 edition, with minor revisions.

Partial Differential Equations with Fourier Series and Boundary Value Problems

Essentials of Econometrics 4th Edition Gujarati Solutions ...

The document provides solutions to problems from Chapter 2 of Essentials of Econometrics 4th Edition by Gujarati. It includes explanations and calculations ...

Essentials of econometrics 4th edition gujarati solutions ...

Solution manual essentials of econometrics 4th edition gujarati solutions manual full download: chapter basic.

Solution Manual For Essentials of Econometrics Gujarati ...

This document provides the solution manual for the 4th edition of the textbook "Essentials of Econometrics" by Gujarati and Porter. It contains answers to ...

Essentials Of Econometrics Solution Manual

Get instant access to our step-by-step Essentials Of Econometrics solutions manual. Our solution manuals are written by Chegg experts so you can be assured ...

solution-manual-essentials-of-econometrics-4th-edition ...

1 CHAPTER 2 BASIC IDEAS OF LINEAR REGRESSION: THE TWO-VARIABLE MODEL QUESTIONS 2.1. (a) It states how the population meanvalue of the dependent variable is ...

Basic Econometrics by Damodar N Gujarati Solution Key ...

Basic Econometrics by Damodar N Gujarati Solution Key Manual. by Adnan Amin. aaaaaaaaaaaaaaaaa. See Full PDF Download PDF ...

Essentials of Econometrics, Gujarati - Downloadable ...

11 Jun 2022 — Description: Solutions Manual for Essentials of Econometrics, Gujarati, 4e is all you need if you are in need for a manual that solves all ...

Solutions Manual for Essentials of Econometrics 4th ...

Solutions Manual for Essentials of Econometrics 4th Edition by Gujarati sample chapter. Course: Macro Economics (COM604). 48 Documents.

Essentials Of Econometrics 4th Edition Textbook Solutions

Access Essentials of Econometrics 4th Edition solutions now. Our solutions are written by Chegg experts so you can be assured of the highest quality!

Student Solutions Manual

Gujarati. U.S. Naval Academy ... This manual provides answers and solutions to some 475 questions and problems in the fourth edition of Basic Econometrics.

Theory And Applications Of Fractional Differential Equations

theory, they can be applied to other branches of mathematics. Fractional differential equations, also known as extraordinary differential equations,... 58 KB (7,330 words) - 05:43, 9 February 2024 stochastic differential equations. Stochastic differential equations can also be extended to differential manifolds. Stochastic differential equations originated... 36 KB (5,604 words) - 16:17, 21 February 2024

rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play... 30 KB (3,650 words) - 22:56, 20 February 2024 existence and smoothness of solutions to the Navier–Stokes equations, named as one of the Millennium Prize Problems in 2000. Partial differential equations are... 50 KB (6,671 words) - 13:23, 11 March 2024

differential equations which may be with respect to more than one independent variable. A linear differential equation is a differential equation that is defined... 43 KB (4,751 words) - 14:59, 22 November 2023

In mathematics, an integro-differential equation is an equation that involves both integrals and derivatives of a function. The general first-order, linear... 6 KB (828 words) - 02:02, 13 November 2023 case of linear differential equations, this means that there are no constant terms. The solutions of any linear ordinary differential equation of any order... 7 KB (1,153 words) - 10:36, 19 March 2023

partial derivatives. A linear differential equation or a system of linear equations such that the associated homogeneous equations have constant coefficients... 30 KB (4,757 words) - 21:48, 3 November 2023 Books. ISBN 2-88124-864-0 Theory and Applications of Fractional Differential Equations, by Kilbas, A. A.; Srivastava, H. M.; and Trujillo, J. J. Amsterdam... 18 KB (2,748 words) - 18:38, 5 March 2024 In mathematics, an ordinary differential equation is called a Bernoulli differential equation if it is of the form y 2 + P (x) y = Q (x) y n, $\{\text{displaystyle..6 KB (993 words)} - 21:30, 5 February 2024\}$ equations. It has been shown that a jerk equation, which is equivalent to a system of three first order, ordinary, non-linear differential equations,... 120 KB (13,749 words) - 03:05, 7 March 2024 equations relate to differential equations. See time scale calculus for a unification of the theory of difference equations with that of differential... 25 KB (4,158 words) - 00:20, 17 March 2024 interpretation of control theory as a set of differential equations modeling and regulating kinetic motion, and broaden it into a vast generalization of a regulator... 45 KB (6,482 words) - 01:40, 16 March 2024 (2006). "2. Fractional Integrals and Fractional Derivatives §2.1 Property 2.4". Theory and Applications of Fractional Differential Equations. Elsevier.... 11 KB (1,554 words) - 03:51, 1 February 2024 In mathematics, delay differential equations (DDEs) are a type of differential equation in which the derivative of the unknown function at a certain time... 15 KB (2,417 words) - 18:38, 22 July 2023 "Theory of Fuzzy Differential Equations and Inclusions". Routledge & Dress. Retrieved 2022-10-15. Devi, S. Sindu; Ganesan, K. (2019). "Application... 4 KB (481 words) - 15:39, 23 September 2023

Ability to borrow and lend any amount, even fractional, of cash at the riskless rate. Ability to buy and sell any amount, even fractional, of the stock (this... 63 KB (9,358 words) - 20:47, 29 February 2024 Game theory is the study of mathematical models of strategic interactions among rational agents. It has applications in many fields of social science... 157 KB (17,151 words) - 00:10, 17 March 2024 a differential-algebraic system of equations (DAE) is a system of equations that either contains differential equations and algebraic equations, or... 19 KB (2,850 words) - 21:48, 2 January 2024 most of the good properties of parabolic equations. See the extensive List of nonlinear partial differential equations. Euler—Lagrange equation Nonlinear... 9 KB (1,085 words) - 17:58, 3 November 2023

Theory and Applications of Special Functions and Fractional Calculus - Theory and Applications of Special Functions and Fractional Calculus by CHARUSAT 596 views Streamed 3 years ago 1 hour, 20 minutes - Jagdev Singh JECRC University, Jaipur Date: 26/09/2020 Talk (The **Fractional differential equations**,): 02.30 pm to 04.00 pm.

The Fractional Derivative, what is it? | Introduction to Fractional Calculus - The Fractional Derivative, what is it? | Introduction to Fractional Calculus by vcubingx 356,506 views 4 years ago 14 minutes, 7 seconds - This video explores another branch of calculus, **fractional**, calculus. It talks about the Riemann–Liouville Integral and the Left ...

Introduction

Fractional Integration

The Left R-L Fractional Derivative

The Tautochrone Problem

fractional calculus definition, history importance and application - fractional calculus definition, history importance and application by Noreen Niazi 9,946 views 4 years ago 10 minutes, 11 seconds - A **differential equation**, is **fractional**, if it involves an operator that can be considered to be between a (k-1) th and kth order ...

Fractional differentiation and integration: Theories, methods, and applications w/ Prof Dr Atangana - Fractional differentiation and integration: Theories, methods, and applications w/ Prof Dr Atangana by African Institute for Mathematical Sciences-AIMS 3,462 views 2 years ago 1 hour, 23 minutes - Classical **differential**, and integral operators have been used in model processes observed in real-world problems. However, in ...

Convolution

Definition of Fractional Derivative

Capital Derivative

The Commutativity and the Limitation of the Commutativity

Fundamental Theorem of Calculus

Global Differentiation and Integration

Classical Derivative

Application of Non-Local Operator

References

pi-th derivative of x^pi - pi-th derivative of x^pi by blackpenredpen 204,909 views 4 years ago 9

minutes, 25 seconds - Here we will see how to find the pi-th derivative of x^pi. It's part of "**fractional**, calculus". enjoy! half derivative (& more) by Dr. P: ...

Euler's formula with introductory group theory - Euler's formula with introductory group theory by $3Blue1Brown\ 2,381,483\ views\ 7\ years\ ago\ 24\ minutes\ -\ There's\ a\ slight\ mistake\ at\ 13:33,\ where\ the\ angle\ should\ be\ arctan(1/2)\ =\ 26.565\ degrees,\ not\ 30\ degrees.\ Arg!\ If\ anyone\ asks,\ ...$

Intro

What is group theory

Group of symmetries

Group arithmetic

Exponents

Coupled System of Differential Equations - Coupled System of Differential Equations by Maths with Jay 112,640 views 7 years ago 7 minutes, 19 seconds - Use, eigenvalues and eigenvectors of 2x2 matrix to simply solve this coupled system of **differential equations**, then check the ...

Divergence and curl: The language of Maxwell's equations, fluid flow, and more - Divergence and curl: The language of Maxwell's equations, fluid flow, and more by 3Blue1Brown 4,038,753 views 5 years ago 15 minutes - Timestamps 0:00 - Vector fields 2:15 - What is divergence 4:31 - What is curl 5:47 - Maxwell's **equations**, 7:36 - Dynamic systems ...

Vector fields

What is divergence

What is curl

Maxwell's equations

Dynamic systems

Explaining the notation

No more sponsor messages

How REAL Men Integrate Functions - How REAL Men Integrate Functions by Flammable Maths 2,309,990 views 3 years ago 35 seconds – play Short - How do real men solve an integral like cos(x) from 0 to pi/2? Obviously by using the Fundamental Theorem of Engineering!

What Lies Between a Function and Its Derivative? | Fractional Calculus - What Lies Between a Function and Its Derivative? | Fractional Calculus by Morphocular 1,177,607 views 1 year ago 25 minutes - Fractional Differential Equations,: An Introduction to **Fractional**, Derivatives, **Fractional Differential Equations**, to Methods of Their ...

Interpolating between polynomials

What should half derivatives mean?

Deriving fractional integrals

Playing with fractional integrals

Deriving fractional derivatives

Fractional derivatives in action

Nonlocality

Interpreting fractional derivatives

Visualizing fractional integrals

My thoughts on fractional calculus

Derivative zoo

Half Derivative Definition - Half Derivative Definition by Dr Peyam 63,600 views 5 years ago 9 minutes, 22 seconds - In this video, I give an actual definition of the half derivative and **use**, it to calculate the half-derivative of x. Thankfully we get the ...

Definition of the Fractional Derivative

Formula for the Half Derivative of X

Evaluate the Integral

Differential Equations | Applications of Second Order DEs: Spring Example 1 - Differential Equations | Applications of Second Order DEs: Spring Example 1 by Michael Penn 14,897 views 4 years ago 7 minutes, 16 seconds - We model a spring system using a second order **differential equation**,. http://www.michael-penn.net.

First order, Ordinary Differential Equations. - First order, Ordinary Differential Equations. by Math by LEO 558,648 views 5 years ago 48 minutes - Contact info: MathbyLeo@gmail.com First Order, Ordinary **Differential Equations**, solving techniques: 1- Separable Equations 2- ...

- 2- Homogeneous Method
- 3- Integrating Factor
- 4- Exact Differential Equations

Applications of First Order Differential Equations - Mixing Concentrations - Applications of First

Order Differential Equations - Mixing Concentrations by Mathispower4u 95,907 views 11 years ago 9 minutes, 52 seconds - This video provides a lesson on how to model a mixture problem using a linear first order **differential equation**.. Video Library: ...

Theory and Applications of Special Functions and Fractional Calculus - Theory and Applications of Special Functions and Fractional Calculus by CHARUSAT 358 views Streamed 3 years ago 2 hours, 33 minutes - Prof. Gajanan Birajdar (Ramrao Adik Institute of Technology, Navi Mumbai) Date : 27/09/2020, Time : 10:00 am - 11:30 am Title of ...

Filtering Operation Using Matlab

Fractional Calculus Applications in Image Processing

Fractional Order Method

Fractional Order Methods

What Is Image Enhancement

Image Enhancement

Integer Order Differential Operators

Example of a 5x5 Fractional Differential Mask Operator

Landsat Image Enhancement

Age Detection

Conventional Operators

The Advantage of Fractional Order Derivative

Final Mask Template

Performance Matrix

Psnr

Astronomical Image Enhancement

Speech Processing

How Can We Implement a 5x5 Fractional Mass in Matlab Do We Need To Generate Matlab Code Applications of analysis to fractional differential equations - Applications of analysis to fractional differential equations by Dr Chris Tisdell 11,526 views 10 years ago 37 minutes - I show how to apply theorems from analysis to **fractional differential equations**,. The ideas feature the Arzela-Ascoli theorem and ...

The Ziller Ascoli Theorem and the via Stress Polynomial Approximation Theorem

Define the Problem

Local Solutions

Uniform Convergence

Achieve Uniform Convergence

Example of a Sequence of Functions That Would Be Uniformly Equally Continuous

Uniform Boundedness of a Sequence of Functions

Stress Approximation Theorem

A Lipschitz Condition

Main Result

Showing the Uniform Equal Continuity of X Sub K

Apply Theorem 10 To Show that this Nonlinear Initial Value Problem for Fractional Differential Equations Has At Least One Solution

solving a fractional differential equation - solving a fractional differential equation by Dr Peyam 9,704 views 1 year ago 9 minutes, 1 second - solving a **fractional differential equation**,. I solve an equation with half derivatives, by using techniques from calculus like ...

the differential equation

calculating the terms

putting it together

the solution and applications

When do fractional differential equations have maximal solutions? - When do fractional differential equations have maximal solutions? by Dr Chris Tisdell 2,319 views Streamed 9 years ago 31 minutes.

- When do **fractional differential equations**, have maximal solutions? This video discusses this question in the following way. Firstly ...

What We Mean by a Solution to a Fractional Differential, ...

What Is a Maximal Solution

A Comparison Theorem

Proof

The Comparison Theorem

Celer Ascoli Theorem

Comparison Theorem

Theory and Applications of Special Functions and Fractional Calculus - Theory and Applications of Special Functions and Fractional Calculus by CHARUSAT 317 views Streamed 3 years ago 1 hour, 5 minutes - Prof. Ajay Shukla, SVNIT, Surat Title: Introduction to Special Functions.

Introduction to Fractional Calculus - Introduction to Fractional Calculus by Wolfram 2,693 views 1 year ago 22 minutes - Fractional, calculus develops the **theory**, of differentiation and integration of any real or complex order. It extends the basic ...

Theory and Applications of Special Functions and Fractional Calculus - Theory and Applications of Special Functions and Fractional Calculus by CHARUSAT 378 views Streamed 3 years ago 1 hour, 31 minutes - Prof. Gajanan Birajdar (Ramrao Adik Institute of Technology, Navi Mumbai) Date : 27/09/2020, Time : 10:00 am - 11:30 am Title of ...

Fractional derivatives and applications in MRI - Fractional derivatives and applications in MRI by UBC Physics & Astronomy 274 views 2 years ago 52 minutes - UBC Physics & Astronomy Department Colloquium on July 8, 2021. Presented by Richard Magin (UIC).

Introduction

Cartoon

Summary

Outline

Spin Dynamics

Coarse graining

Diffusion in MRI

Fractional calculus

Phase diagrams

Generalized models

Conclusions

Clinical work

Special issue

End

Fractional Differential Equation - Fractional Differential Equation by Online Mathematics Tutorial 6,394 views 3 years ago 4 minutes, 16 seconds - This video makes you crazy because we always discuss ordinary and partial **differential equation**, but in this video we will solve ...

Theory and Applications of Special Functions and Fractional Calculus - Theory and Applications of Special Functions and Fractional Calculus by CHARUSAT 551 views Streamed 3 years ago 1 hour, 32 minutes - Prof. Vishwesh Vyawahare Ramrao Adik Institute of Technology, Navi Mumbai Date:26/09/2020 Talk (Introduction to **Fractional**, ...

Some tools to study random fractional differential equations and applications - Some tools to study random fractional differential equations and applications by Uncertainties 2020 247 views 3 years ago 16 minutes - Differential equations, with uncertainties and **fractional**, derivatives are currently two cut-edge topics. The former have an important ...

Lecture 19: Introduction to Fractional Calculus - Part 1 - Lecture 19: Introduction to Fractional Calculus - Part 1 by NPTEL-NOC IITM 3,188 views 1 year ago 26 minutes - To access the translated content:

1. The translated content of this course is available in regional languages. For details please ... Symposium 1 Fractional Differential equations - Symposium 1 Fractional Differential equations by MGM University 192 views Streamed 2 years ago 3 hours, 11 minutes - Symposium 1 Fractional Differential equations, : theory, and numerics Convenor: Prof. Mani Mehra, IIT Delhi Speakers:

Professors ...

Search filters

Keyboard shortcuts

Playback

General

Subtitles and closed captions

Spherical videos