Final Year Microcontroller Based Project Report

#microcontroller project report #final year engineering project #embedded systems design #student project documentation #hardware project report

This comprehensive report details a final year university project focused on microcontroller-based applications. It covers the design, implementation, and testing phases of an embedded system, offering valuable insights for students and engineers working on similar hardware projects. The document serves as an essential resource for understanding practical microcontroller project development and documentation standards.

Every lecture note is organized for easy navigation and quick reference.

Thank you for visiting our website.

We are pleased to inform you that the document Microcontroller Based Report you are looking for is available here.

Please feel free to download it for free and enjoy easy access.

This document is authentic and verified from the original source.

We always strive to provide reliable references for our valued visitors.

That way, you can use it without any concern about its authenticity.

We hope this document is useful for your needs.

Keep visiting our website for more helpful resources.

Thank you for your trust in our service.

Many users on the internet are looking for this very document.

Your visit has brought you to the right source.

We provide the full version of this document Microcontroller Based Report absolutely free.

Design, Software Engineering and Implementation of an Embedded Telemetry System for a Solar-Powered Racing Car

Inhaltsangabe: Abstract: An embedded telemetry system has been designed and implemented into the solar-powered racing car Mad Dog 3. The system shall assist strategists in making decisions during a solar car race. It delivers input data for a computer simulation model and for reconstruction of situations when failure occurred. System requirements have been analysed and the scope of solutions on the market has been explored. As a result, the choice of hardware and peripheral components has been made in favour of a microcomputer-based system. Strategy-relevant quantities in the solar car are measured by transducers and at the same time displayed on panel meters in the cockpit. Measured data are transmitted via a bus system to the central processing unit, which consists of the world s smallest PC. From the sensor signals the car s performance data is computed. As a result of computation, sets of performance data are sent to a laptop computer in one of the support vehicles by a pair of wireless modems. For safety reason, the system has been designed redundant. There is a digital device and a second analogue instrument for all key measurements. Communication equipment between the solar car driver and support staff has been reviewed and recommendations have been given. The project has been completed successfully, i.e. project aims have been reached. This was confirmed during a test drive. The range of the wireless modems has been proven satisfactory. CB radios have been shown not to be appropriate. There is a wide scope of additional investigation and supplementary features, due to the flexible nature of a microcomputer-based system. Inhaltsverzeichnis:Table of Contents: Acknowledgements Notationii 1.Introduction1 1.1Solar Energy3 1.2Solar Car Racing4 1.2.1ASC Race Regulations6 2.Project Work7 2.1Project Aims7 2.2Project management9 2.3Fund Raising11 2.4Research.12 2.4.1Telemetry12 2.4.2Previous Work15 2.4.3Types of Telemetry Systems17 2.4.4Embedded Systems.19 2.5Design21 2.5.1Requirements21 2.5.2Components24

2.5.3Software Engineering28 2.5.4Test and Debugging32 2.6Implementation33 2.7Maintenance34 2.8Communication35 3.Recommendations37 References38 Appendix39

DIY Microcontroller Projects for Hobbyists

A practical guide to building PIC and STM32 microcontroller board applications with C and C++ programming Key FeaturesDiscover how to apply microcontroller boards in real life to create interesting IoT projectsCreate innovative solutions to help improve the lives of people affected by the COVID-19 pandemicDesign, build, program, and test microcontroller-based projects with the C and C++ programming languageBook Description We live in a world surrounded by electronic devices, and microcontrollers are the brains of these devices. Microcontroller programming is an essential skill in the era of the Internet of Things (IoT), and this book helps you to get up to speed with it by working through projects for designing and developing embedded apps with microcontroller boards. DIY Microcontroller Projects for Hobbyists are filled with microcontroller programming C and C++ language constructs. You'll discover how to use the Blue Pill (containing a type of STM32 microcontroller) and Curiosity Nano (containing a type of PIC microcontroller) boards for executing your projects as PIC is a beginner-level board and STM-32 is an ARM Cortex-based board. Later, you'll explore the fundamentals of digital electronics and microcontroller board programming. The book uses examples such as measuring humidity and temperature in an environment to help you gain hands-on project experience. You'll build on your knowledge as you create IoT projects by applying more complex sensors. Finally, you'll find out how to plan for a microcontroller-based project and troubleshoot it. By the end of this book, you'll have developed a firm foundation in electronics and practical PIC and STM32 microcontroller programming and interfacing, adding valuable skills to your professional portfolio. What you will learnGet to grips with the basics of digital and analog electronicsDesign, build, program, and test a microcontroller-based systemUnderstand the importance and applications of STM32 and PIC microcontrollersDiscover how to connect sensors to microcontroller boardsFind out how to obtain sensor data via codingUse microcontroller boards in real life and practical projectsWho this book is for This STM32 PIC microcontroller book is for students, hobbyists, and engineers who want to explore the world of embedded systems and microcontroller programming. Beginners, as well as more experienced users of digital electronics and microcontrollers, will also find this book useful. Basic knowledge of digital circuits and C and C++ programming will be helpful but not necessary.

PIC Microcontroller Projects in C

Extensively revised and updated to encompass the latest developments in the PIC 18FXXX series, this book demonstrates how to develop a range of microcontroller applications through a project-based approach. After giving an introduction to programming in C using the popular mikroC Pro for PIC and MPLAB XC8 languages, this book describes the project development cycle in full. The book walks you through fully tried and tested hands-on projects, including many new, advanced topics such as Ethernet programming, digital signal processing, and RFid technology. This book is ideal for engineers, technicians, hobbyists and students who have knowledge of the basic principles of PIC microcontrollers and want to develop more advanced applications using the PIC18F series. This book Includes over fifty projects which are divided into three categories: Basic, Intermediate, and Advanced. New projects in this edition: Logic probe Custom LCD font design Hi/Lo game Generating various waveforms in real-time Ultrasonic height measurement Frequency counter Reaction timer GPS projects Closed-loop ON/OFF temperature control Bluetooth projects (master and slave) RFid projects Clock using Real-time-clock (RTC) chip RTC alarm project Graphics LCD (GLCD) projects Barometer+thermometer+altimeter project Plotting temperature on GLCD Ethernet web browser based control Ethernet UDP based control Digital signal processing (Low Pass Filter design) Automotive LIN bus project Automotive CAN bus project Multitasking projects (using both cooperative and Round-robin scheduling) Unipolar stepper motor projects Bipolar stepper motor projects Closed-loop ON/OFF DC motor control A clear introduction to the PIC 18FXXX microcontroller's architecture Covers developing wireless and sensor network applications, SD card projects, and multi-tasking; all demonstrated with the block and circuit diagram, program description in PDL, program listing, and program description Includes more than 50 basic, intermediate, and advanced projects

Machine Vision and Mechatronics in Practice

The contributions for this book have been gathered over several years from conferences held in the series of Mechatronics and Machine Vision in Practice, the latest of which was held in Ankara, Turkey.

The essential aspect is that they concern practical applications rather than the derivation of mere theory, though simulations and visualization are important components. The topics range from mining, with its heavy engineering, to the delicate machining of holes in the human skull or robots for surgery on human flesh. Mobile robots continue to be a hot topic, both from the need for navigation and for the task of stabilization of unmanned aerial vehicles. The swinging of a spray rig is damped, while machine vision is used for the control of heating in an asphalt-laying machine. Manipulators are featured, both for general tasks and in the form of grasping fingers. A robot arm is proposed for adding to the mobility scooter of the elderly. Can EEG signals be a means to control a robot? Can face recognition be achieved in varying illumination?"

Microcontroller Projects in C for the 8051

This book is a thoroughly practical way to explore the 8051 and discover C programming through project work. Through graded projects, Dogan Ibrahim introduces the reader to the fundamentals of microelectronics, the 8051 family, programming in C, and the use of a C compiler. The specific device used for examples is the AT89C2051 - a small, economical chip with re-writable memory, readily available from the major component suppliers. A working knowledge of microcontrollers, and how to program them, is essential for all students of electronics. In this rapidly expanding field many students and professionals at all levels need to get up to speed with practical microcontroller applications. Their rapid fall in price has made microcontrollers the most exciting and accessible new development in electronics for years - rendering them equally popular with engineers, electronics hobbyists and teachers looking for a fresh range of projects. Microcontroller Projects in C for the 8051 is an ideal resource for self-study as well as providing an interesting, enjoyable and easily mastered alternative to more theoretical textbooks. Practical projects that enable students and practitioners to get up and running straight away with 8051 microcontrollers A hands-on introduction to practical C programming A wealth of project ideas for students and enthusiasts

PIC in Practice

This volume describes the PIC family of microcontrollers. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications. Microcontrollers are used in automatically controlled products and devices, such as automobile engine control systems, implantable medical devices, remote controls, office machines, appliances, power tools, and toys. This book is based around the practical use of the PIC microcontroller through project work. Principles are introduced gradually, through hands-on experience, enabling students to develop their understanding at their own pace.

Microcontroller-Based Temperature Monitoring and Control

*Provides practical guidance and essential theory making it ideal for engineers facing a design challenge or students devising a project *Includes real-world design guides for implementing a microcontroller-based control systems *Requires only basic mathematical and engineering background as the use of microcontrollers is introduced from first principles Engineers involved in the use of microcontrollers in measurement and control systems will find this book an essential practical guide, providing design principles and application case studies backed up with sufficient control theory and electronics to develop their own systems. It will also prove invaluable for students and experimenters seeking real-world project work involving the use of a microcontroller. Unlike the many introductory books on microcontrollers Dogan Ibrahim has used his engineering experience to write a book based on real-world applications. A basic mathematical and engineering background is assumed, but the use of microcontrollers is introduced from first principles. Microcontroller-Based Temperature Monitoring and Control is an essential and practical guide for all engineers involved in the use of microcontrollers in measurement and control systems. The book provides design principles and application case studies backed up with sufficient control theory and electronics to develop your own systems. It will also prove invaluable for students and experimenters seeking real-world project work involving the use of a microcontroller. Techniques for the application of microcontroller-based control systems are backed up with the basic theory and mathematics used in these designs, and various digital control techniques are discussed with reference to digital sample theory. The first part of the book covers temperature sensors and their use in measurement, and includes the latest non-invasive and digital sensor types. The second part covers sampling procedures, control systems and the application of digital control

algorithms using a microcontroller. The final chapter describes a complete microcontroller-based temperature control system, including a full software listing for the programming of the controller.

Embedded Microcontroller Interfacing

Mixed-Signal Embedded Microcontrollers are commonly used in integrating analog components needed to control non-digital electronic systems. They are used in automatically controlled devices and products, such as automobile engine control systems, wireless remote controllers, office machines, home appliances, power tools, and toys. Microcontrollers make it economical to digitally control even more devices and processes by reducing the size and cost, compared to a design that uses a separate microprocessor, memory, and input/output devices. In many undergraduate and post-graduate courses, teaching of mixed-signal microcontrollers and their use for project work has become compulsory. Students face a lot of difficulties when they have to interface a microcontroller with the electronics they deal with. This book addresses some issues of interfacing the microcontrollers and describes some project implementations with the Silicon Lab C8051F020 mixed—signal microcontroller. The intended readers are college and university students specializing in electronics, computer systems engineering, electrical and electronics engineering; researchers involved with electronics based system, practitioners, technicians and in general anybody interested in microcontrollers based projects.

Arduino and Scilab based Projects

Arduino and Scilab based Projects provides information ranging from the basics to advanced knowledge of Arduino and its interfacing with input/output devices (display devices, actuators, sensors), communication modules (RF modem, Zigbee) and Scilab. It also provides embedded system based on Arduino with simulation, programming and interfacing with Scilab, Arduino interfacing with Scilab with and without Arduino 1.1 packages. Chapters are arranged in an easy-to-understand sequence that enhances the learning experience for readers. Descriptions of real time project prototypes with programming and simulation of Arduino and Scilab.

PIC32 Microcontrollers and the Digilent Chipkit

PIC32 Microcontrollers and the Digilent chipKIT: Introductory to Advanced Projects will teach you about the architecture of 32-bit processors and the hardware details of the chipKIT development boards, with a focus on the chipKIT MX3 microcontroller development board. Once the basics are covered, the book then moves on to describe the MPLAB and MPIDE packages using the C language for program development. The final part of the book is based on project development, with techniques learned in earlier chapters, using projects as examples. Each project will have a practical approach, with in-depth descriptions and program flow-charts with block diagrams, circuit diagrams, a full program listing and a follow up on testing and further development. With this book you will learn: State-of-the-art PIC32 32-bit microcontroller architecture How to program 32-bit PIC microcontrollers using MPIDE, MPLAB, and C language Core features of the chipKIT series development boards How to develop simple projects using the chipKIT MX3 development board and Pmod interface cards how to develop advanced projects using the chipKIT MX3 development boards Demonstrates how to use the PIC32 series of microcontrollers in real, practical applications, and make the connection between hardware and software programming Usage of the PIC32MX320F128H microcontroller, which has many features of the PIC32 device and is included on the chipKIT MX3 development board Uses the highly popular chipKIT development boards, and the PIC32 for real world applications, making this book one of a kind

PIC16F1847 Microcontroller-Based Programmable Logic Controller

The PIC16F1847-Based PLC project supports up to 4 analog inputs and 1 analog output, 1 High Speed Counter, 2 PWM (pulse width modulation) outputs, 1 Drum Sequencer Instruction with up to 16 steps, the implementation of Sequential Function Charts (SFCs) with up to 24 steps. This volume presents advanced concepts of the PIC16F1847-Based PLC project and consists of topics like program control, high speed counter and PWM macros. It further explains memory related drum sequencer instruction, sequential functional charts, and analog input and output modules. Aimed at researchers and graduate students in electrical engineering, power electronics, robotics and automation, sensors, this book: Presents program control macros to enable or disable a block of PLC program or to move execution of a program from one place to another. Proposes a High-Speed Counter and four PWM Macros for high speed counting and PWM operations. Develops memory related macros to enable the user to do memory read/write operations. Provides a Drum Sequencer instruction with up to 16

steps and 16 outputs on each step. Discusses the implementation of Sequential Function Chart (SFC) elements with up to 24 steps.

Proceedings of EMPD

A true beginner's guide of the popular PIC microcontroller, including 12 projects to build.

MicroBox III

The volume focusses on intermediate concepts of the PIC16F1847-Based PLC project, and covers arithmetical operation ability of PLCs, logical function performers and operations like AND, NAND, OR, NOR. Further, it explains shift and rotate macros moving bits in a register to right or left, and selection macros enabling one value to be selected from several given values according to certain criteria. Demultiplexer circuit is illustrated, which is used to send a signal to one of many devices. Finally, it explains decoder, priority encoder and conversion macros. All the concepts are supported using flowcharts. Aimed at researchers and graduate students in electrical engineering, power electronics, robotics and automation, sensors, this book: Presents arithmetical and logical macros to carry out arithmetical and logical operations to be used for 8-bit or 16-bit variables and/or constant values. Provides shift and rotate macros to do arithmetical or logical shift and rotate operations to be used for 8-bit or 16-bit variables. Proposes selection macros to enable the user to do 8-bit or 16-bit move, load, selection, maximum, minimum, limiting, multiplexing and byte multiplexing operations. Develops demultiplexer macros, decoder macros and priority encoder macros to be used as combinational circuits. Presents conversion macros to provide functions to convert given data from one format to another one.

PIC Microcontroller Project Book

This book is specially described about best IOT Projects with the simple explanation .From this book you can get lots of information about the IOT and How the Projects are developed. You can get an information about the free cloud services and effective way to apply in your projects, you can get how to program and create a proper automation in IOT products, Which is helpful for the starting stage people but they must know about internet of things.... You will know how to process the microchip controller and new software for working. You can gain lots of project knowlegde from this book and i am sure, if you done this book, you have a IOT Knowlegde... From this you can get lot of new ideas ... why are u waiting for ? and get it my friend we really proud to present this book for you ... Thank u

PIC16F1847 Microcontroller-Based Programmable Logic Controller

In many undergraduate and post-graduate courses, teaching of mixed-signal microcontrollers and their use for project work has become compulsory. Students face a lot of difficulties when they have to interface a microcontroller with the electronics they deal with. This book addresses some issues of interfacing the microcontrollers and describes some project implementations with the Silicon Lab C8051F020 mixed-signal microcontroller. The intended readers are college and university students specializing in electronics, computer systems engineering, electrical and electronics engineering; researchers involved with electronics based system, practitioners, technicians and in general anybody interested in microcontrollers based projects. In many undergraduate and post-graduate courses, teaching of mixed-signal microcontrollers and their use for project work has become compulsory. Students face a lot of difficulties when they have to interface a microcontroller with the electronics they deal with. This book addresses some issues of interfacing the microcontrollers and describes some project implementations with the Silicon Lab C8051F020 mixed-signal microcontroller. The intended readers are college and university students specializing in electronics, computer systems engineering, electrical and electronics engineering; researchers involved with electronics based system, practitioners, technicians and in general anybody interested in microcontrollers based projects.

Microcontroller-based System Controller for a Hybrid Electric Vehicle

Inhaltsangabe:Abstract: The project aim was to a built a robot, controlled by a PIC microcontroller to follow a line completely autonomously and as quickly as possible. The robot meets the requirements from the RoboRama Contest, followed a T-shape course, and obtained more (safety) features. Different kinds of design features and digital algorithms were developed and tested, in order to achieve the best results. Applied project management techniques and used key skills, guaranteed the successful

completion of the project, in the design and construction of hardware and software technologies. The hardware was based on a block structure with infrared sensors at the front of the vehicle. Their analogue signals were transferred to digital logic with a comparator. This information used a PIC 16F84A microcontroller to control the movement and direction of the robot with pulse width modulation (PWM). All parts were mounted on a chassis, implemented with a mechanical construction set. Batteries of 9V provided the necessary power supply. Adjustments were done through iterative steps, to come to the final result of the robot system. The main adapted design feature was the motor and steering system. First of all a separate servomotor for the steering and a single DC motor for the forward movement was fixed. Through implemented and first testing steps, this resolution lacked the required performance. Hence, the design changed to two DC motors, which offered a satisfactory solution. The electronic circuit was designed with the computer aided design tool Proteus and executed as a strip line board. The software algorithm development started with the truth table to reduce the possible events from thirty-two to the eleven applied conditions. The generated flowchart gave the program a structure and applied the truth table decision in different PWM generations. Finally, the software was written in assembler language and implemented on the PIC. Inhaltsverzeichnis: Table of Contents: iTitlei iiAbstractii iiiAcknowledgementsiii ivList of Figuresiv vList of Tablesvi viList of Abbreviationsvii viiList of Symbolsix viiiTable of Contentsx 1.Introduction1 1.1Project Aims2 1.2RoboRama Rules2 2. Specification and Analysis 5 2.1 Specification of the project 5 2.1.1 Research and definition for the project5 2.1.2Resources management7 2.2Project time plan8 3.Design of the robot9 3.1Design of the electronic hardware11 3.1.1Sensors OPD 70911 3.1.2Comparator [...]

Beginning 8051 Microcontroller Projects Handson

February issue includes Appendix entitled Directory of United States Government periodicals and subscription publications; September issue includes List of depository libraries; June and December issues include semiannual index

Embedded System Based on Atmega Microcontroller

The Controller Area Network (CAN) was originally developed to be used as a vehicle data bus system in passenger cars. Today, CAN controllers are available from over 20 manufacturers, and CAN is finding applications in other fields, such as medical, aerospace, process control, automation, and so on. This book is written for students, for practising engineers, for hobbyists, and for everyone else who may be interested to learn more about the CAN bus and its applications. The aim of this book is to teach you the basic principles of CAN networks and in addition the development of microcontroller based projects using the CAN bus. In summary, this book enables the reader to: Learn the theory of the CAN bus used in automotive industry; Learn the principles, operation, and programming of microcontrollers; Design complete microcontroller based projects using the C language; Develop complete real CAN bus projects using microcontrollers; Learn the principles of OBD systems used to debug vehicle electronics. You will learn how to design microcontroller based CAN bus nodes, build a CAN bus, develop high-level programs, and then exchange data in real-time over the bus. You will also learn how to build microcontroller hardware and interface it to LEDs, LCDs, and A/D converters. The book assumes that the reader has some knowledge on basic electronics. Knowledge of the C programming language will be useful in later chapters of the book, and familiarity with at least one member of the PIC series of microcontrollers will be an advantage, especially if the reader intends to develop microcontroller based projects using the CAN bus. The CD contains a special demo version of the mikroC compiler which supports the key microcontrollers including: PIC, dsPIC, PIC24, PIC32 and AVR. This special version additionally features an advanced CAN library of intuitive and simple-to-use functions to encourage programming with easy and comfortable development of CAN networks.

Proceedings of the Trends in Electronics Conference

Proceedings from the International Conference on Advances in Engineering and Technology (AET2006)

Embedded Microcontroller Interfacing

This handbook covers a wide range of PIC based projects including such things as digitally controlled power supplies, transistor checkers, a simple capacitance meter, reaction tester, digital dice, digital locks, a stereo audio level meter, and MIDI pedals for use with electronic music systems.

Monthly Catalog of United States Government Publications

Electrical Engineering Projects | Electronics Engineering Projects | Other Engineering Projects

Digital control methods for a line following robot

A wealth of simple and advanced projects to show how PIC BASIC can be used to program the most widely used microcontroller on the market.

Monthly Catalogue, United States Public Documents

Including a 2007 favourite and a brand new title, this bundle will help you get up to speed with PIC microcontrollers and take full advantage of this state-of-the-art technology. Programming 16-Bit PIC Microcontrollers in C teaches you everything you need to know about the 16-bit PIC 24 chip. It teaches you how to side-step common obstacles, solve real-world design problems efficiently, and optimize code for all the new PIC 24 features. Advanced PIC Microcontroller Projects in C is the ONLY project book devoted to the PIC 18 series. Packed with tried and tested hands-on projects, it is an essential guide for anyone wanting to develop more advanced applications using the 18F series. Bundled together for the firs time, this is the ideal way to learn how to create more powerful and cutting edge PIC designs, as quickly and as cheaply as possible.

Monthly Catalog of United States Government Publications

With research continuing to expand and develop, the marketplace for sensors and instrumentation remains one of the most significant for the United Kingdom, the European Union, and the economies of major developed nations. Sensors and Their Applications XI discusses novel research in the field of sensors and transducers, and provides valuable insight into new and topical applications of the technology. The book records the breadth and quality of the field and acts as a topical record of work in sensors and their applications. It will serve as an invaluable reference for physicists, engineers, and chemists working in this area of technology for many years to come.

Controller Area Network Projects

PIC Projects and Applications Using C details how to program the PIC microcontroller in the C language. The book takes a learn-by-doing approach, with applications covering topics such as inputs, outputs, keypads, alphanumeric displays, analogue-to-digital conversion, radio transmitters and receivers, data EEPROM, interrupts and timing. To aid debugging, the book provides a section detailing the use of the simulator and in-circuit debugger. With this book you will learn: How to program the PIC microcontroller in C Techniques for using the simulator and debuggers to find faults on your code The ins and outs of interfacing circuits, such as radio modules and liquid crystal displays How to use the PIC on-board functions, such as interrupts and timing modules, and make analogue measurements Relevant parts of the language are introduced and explained when required for those new to the subject Core principles are introduced gradually for self-paced learning Explains how and why a software program works, and how to alter and expand the code

Proceedings from the International Conference on Advances in Engineering and Technology (AET2006)

Annual Report for the Year ...